第05章-双极型晶体管及相关器件(二)

上传人:101****457 文档编号:95463285 上传时间:2019-08-18 格式:PPT 页数:39 大小:5.09MB
返回 下载 相关 举报
第05章-双极型晶体管及相关器件(二)_第1页
第1页 / 共39页
第05章-双极型晶体管及相关器件(二)_第2页
第2页 / 共39页
第05章-双极型晶体管及相关器件(二)_第3页
第3页 / 共39页
第05章-双极型晶体管及相关器件(二)_第4页
第4页 / 共39页
第05章-双极型晶体管及相关器件(二)_第5页
第5页 / 共39页
点击查看更多>>
资源描述

《第05章-双极型晶体管及相关器件(二)》由会员分享,可在线阅读,更多相关《第05章-双极型晶体管及相关器件(二)(39页珍藏版)》请在金锄头文库上搜索。

1、2019/8/18,双极型晶体管的静态特性,根据射基结与集基结上偏压的不同,双极型晶体管有四种工作模式。,双极型晶体管的静态特性,下图显示了一p-n-p晶体管的四种工作模式与VEB、VCB的关系,每一种工作模式的少数载流子分布也显示在图中。,如在放大模式下, 射基结是正向偏压,集基结是反向偏压。,在饱和模式下,晶体管中的两个结都是正向偏压,导致两个结的耗尽区中少数载流子分布并非为零,因此在x=W处的边界条件变为,双极型晶体管的静态特性,在饱和模式下,极小的电压就产生了极大的输出电流,晶体管处于导通状态,类似于开关短路(亦即导通)的状态。,在截止模式下,晶体管的两个结皆为反向偏压,边界条件变为p

2、n(0)=pn(W)=0,截止模式下的晶体管可视为开关断路(或是关闭)。,双极型晶体管的静态特性,在反转模式下,射基结是反向偏压,集基结是正向偏压;在反转模式下晶体管的集电极用作发射极,而发射极用作集电极,相当于晶体管被倒过来用,但是在反转模式下的电流增益通常较放大模式小,这是因为集电区掺杂浓度较基区浓度小,造成低的“发射效率”所致。,双极型晶体管的静态特性,上二式各结的偏压视晶体管的工作模式可为正或负。其中系数11、12、21和22可各由以下各式分别得出。,其他模式的电流、电压关系皆可以用类似放大模式下的步骤得出,但要适当地更改边界条件,各模式下电流的一般表示式可写为,双极型晶体管的静态特性

3、,图(c)显示结上的电场强度分布,在中性区域中的少数载流子分布可由无电场的稳态连续方程式表示:,其中Dp和p分别表示少数载流子的扩散系数和寿命。上式的一般解为,一、基区区域:,其中 为空穴的扩散长度,常数C1和C2可由放大模式下的 边界条件,和,决定。,双极型晶体管的静态特性,共基组态晶体管的基极为输入端与输出端所共用,其电流-电压特性仍可用下式描述,其中VEB和VBC分别是输入与输出电压,而IE和IC分别为输入与输出电流。,共基组态晶体管的电流-电压特性,双极型晶体管的静态特性,图(a)是一个共基组态下的p-n-p晶体管,图(b)则为其输出电流-电压特性的测量结果并标示出不同工作模式的区域。

4、集电极与发射极电流几乎相同(01)并几乎与VBC不相关,非常符合理想晶体管的行为。,双极型晶体管的静态特性,即使VBC降到零伏,空穴依然被集电极所吸引,因此集电极电流仍维持一固定值。 图(a)中的空穴分布也显示出这种情形,x=W处的空穴梯度在从VBC0变为VBC=0后,只改变了少许,使得集电极电流在整个放大模式范围下几乎相同。,双极型晶体管的静态特性,若要将集电极电流降为零,必须加一电压在集基结上,使其正向偏压(饱和模式),对硅材料而言,约需加1V左右,如图(b)所示,正向偏压造成x=W处的空穴浓度大增,与x=0处相等图(b)中的水平线,此时在x=W处的空穴梯度也就是集电极电流将会降为零。,双

5、极型晶体管的静态特性,定义0为共射电流增益,是IC对IB的微分,且,下图是一个共射组态下的p-n-p晶体管,将式IB=IE-IC代入,共射组态晶体管的电流-电压特性,可得出共射组态下的集电极电流,定义,此电流是当IB=0时,集电极与发射极间的漏电流。因此,双极型晶体管的静态特性,因为0一般非常接近于1,使得0远大于1,所以基极电流(IB)的微小变化将造成集电极电流(IC)的剧烈变化。下图是不同的基极电流下,输出电流-电压特性的测量结果。可见当IB=0时,集电极和发射极间还存在一不为零的ICEO。,双极型晶体管的静态特性,在一共射组态的理想晶体管中,当IB固定且VEC0时,集电极电流与VEC不相

6、关。当假设中性的基极区域(W)为定值时,上述特性始终成立。然而延伸到基极中的空间电荷区域会随着集电极和基极的电压改变,使得基区的宽度是集基偏压的函数,因此集电极电流将与VEC相关。,双极型晶体管的静态特性,当集电极和基极间的反向偏压增加时,基区的宽度将会减少,导致基区中的少数载流子浓度梯度增加,亦即使得扩散电流增加,因此IC也会增加。下图显示出IC随着VEC的增加而增加,这种电流变化称为厄雷效应,或称为基区宽度调制效应,将集电极电流往左方延伸,与VEC轴相交,可得到交点,称为厄雷电压。,双极型晶体管的静态特性,例3:已知在一理想晶体管中,各电流成分为:IEp=3mA、IEn=0.01mA、IC

7、p=2.99mA、ICn=0.001mA。求出共射电流增益0,并以0和ICBO表示ICEO,并求出ICEO的值。,解: 发射效率为,基区输运系数为,共基电流增益为,因此可得,所以,双极型晶体管的静态特性,前面讨论的是晶体管的静态特性(直流特性),没有涉及其交流特性,也就是当一小信号重叠在直流值上的情况。小信号意指交流电压和电流的峰值小于直流的电压、电流值。,频率响应,高频等效电路:图(a)是以共射组态晶体管所构成的放大器电路,在固定的直流输入电压VEB下,将会有直流基极电流IB和直流集电极电流IC流过晶体管,这些电流代表图(b)中的工作点,由供应电压VCC以及负载电阻RL所决定出的负载线,将以

8、一1/RL的斜率与VCE轴相交于VCC。,5.3 双极型晶体管的频率响应与开关特性,下图(a)是此放大器的低频等效电路,在更高频率的状况下,必须在等效电路中加上适当的电容。与正向偏压的p-n结类似,在正向偏压的射基结中,会有一势垒电容CEB和一扩散电容Cd,而在反向偏压的集基结中只存在势垒电容CCB,如图 (b)所示。,当一小信号附加在输入电压上时,基极电流iB将会随时间变动,而成为一时间函数,如右图所示。基极电流的变动使得输出电流iC跟着变动, 而iC的变动是iB变动的0倍,因此晶体管放大器将输入信号放大了。,双极型晶体管的频率响应与开关特性,其中,称为跨导,称为输入电导。而基区宽度调制效应

9、,将产生一个有限的输出电导。,另外,基极电阻rB和集电极电阻rC也都列入考虑。图(c)是加入上述各器件后的高频等效电路。,双极型晶体管的频率响应与开关特性,截止频率 :在右上图中,跨导gm和输入电导gEB与晶体管的共基电流增益有关。在低频时,共基电流增益是一固定值,不会因工作频率而改变,然而当频率升高至一关键点后,共基电流增益将会降低。右下图是一典型的共基电流增益相对于工作频率的示意图。加入频率的参量后,共基电流增益为,其中0是低频(或直流)共基电流增益,f是共基截止频率,当工作频率f=f时,的值为0.707 0(下降3dB)。,双极型晶体管的频率响应与开关特性,右图中也显示了共射电流增益,由

10、上式可得,其中f称为共射截止频率,由于01,所以f远小于f。,另外,一截止频率fT(又称特征频率)定义为的绝对值变为1时的频率,将前式等号右边的值定为1,可得出,因此fT很接近但稍小于 f。,双极型晶体管的频率响应与开关特性,其中A是器件的截面积,p(x)是少数载流子的分布,空穴经过基区所需的时间B为,特征频率fT也可以表示为(2T)-1,其中T代表载流子从发射极传输到集电极所需的时间,它包含了发射区延迟时间E、基区渡超时间B以及集电区渡越时间C。其中最主要的时间是B。少数载流子在dt时段中所走的距离为dxv(x)dt,其中v(x)是基区中的少数载流子的有效速度,此速度与电流的关系为,双极型晶

11、体管的频率响应与开关特性,以线性空穴分布为例,将,要改善频率响应,必须缩短少数载流子穿越基区所需的时间,所以高频晶体管都设计成短基区宽度。 由于在硅材料中电子的扩散系数是空穴的三倍,所有的高频硅晶体管都是n-p-n的形式(基区中的少数载流子是电子)。 另一个降低基区渡越时间的方法是利用有内建电场的缓变掺杂基区,掺杂浓度变化产生的内建电场将有助于载流子往集电极移动,因而缩短基区渡越时间。,代入,和,双极型晶体管的频率响应与开关特性,在数字电路中晶体管的主要作用是当作开关。可以利用小的基极电流在极短时间内改变集电极电流由关(off)的状态成为开(on)的状态(反之亦然)。关是高电压低电流的状态,开

12、是低电压高电流的状态。,图(a)是一个基本的开关电路,其中射基电压瞬间由负值变为正值。图(b)是晶体管的输出电流,起初因为射基结与集基结都是反向偏压,集电极电流非常低,但射基电压由负变正后,集电极电流沿着负载线,经过放大区最后到达高电流状态的饱和区,此时射基结与集基结都变为正向偏压。因此晶体管在关的状态下,亦即工作于截止模式时,发射极与集电极间不导通;而在开的状态下,亦即工作在饱和模式时,发射极与集电极间导通因此晶体管可近似于一理想的开关。,双极型晶体管的频率响应与开关特性,开关时间是指晶体管状态从关变为开或从开变为关所需的时间,图(a)显示一输入电流脉冲在t0时加在射基端点上,晶体管导通在t

13、t2时,电流瞬间转换到零,晶体管关闭。集电极电流的暂态行为可由储存在基区申的超量少数载流子电荷QB(t)来决定,图(b)是QB(t)与时间的关系图。在导通的过程中,基区储存电荷将由零增加到QB(t2);在关闭的过程中,基区储存电荷由QB(t2)减少到零。,开关暂态过程,双极型晶体管的频率响应与开关特性,当QB(t)Qs时,晶体管工作于放大模式下,其中Qs是VCB=0时基区中的电荷量如图(d),在饱和区的边缘。 IC对时间的变化显示在图(c)中。在导通的过程中,基区存储电荷量达到Qs,电荷量在t=t1时达到饱和区边缘。当QBQs时晶体管进入饱和模式,而发射极和集电极电流大致维持定值。图(d)显示

14、在tt1时,空穴分布pn(x)与t=t1时平行,所以在x=0和x=W处的空穴浓度梯度即电流维持相同。在关闭的过程中,器件起初是在饱和模式下,集电极的电流大约维持不变,直到QB降至Qs,如图(d)。,双极型晶体管的频率响应与开关特性,由t2到QB=Qs时的t3这段时间称为存储延迟时间。当QB=Qs,器件在t=t3时进入放大模式,在这个时间点之后,集电极电流将以指数形式衰减到零。,导通的时间取决于能如何迅速地将空穴(p-n-p晶体管中的少数载流子)加入基极区域,而关闭的时间则取决于能如何迅速地通过复合将空穴移除。晶体管开关时最重要的一个参数是少数载流子的寿命p,一个有效降低p、使转换变快的方法是加入接近禁带中点的产生-复合中心。,双极型晶体管的频率响应与开关特性,由于HBT发射区和基区是不同的半导体材料,它们的禁带宽度差将对HBT的电流增益造成影响,当基区输运系数T非常接近1时,共射电流增益可表示为,异质结双极型晶体管(HBT)是指晶体管中的一个或两个结由不同的半导体材料所构成。HBT的主要优点是发射效率较高,其应用基本上与双极型晶体管相同,但HBT具有较高的速度,可以工作在更高的频率。因为其具有这些特性,HBT在光电、微波和数字应用上非常受欢迎。如在微波应用方面,HBT常被用来制造固态

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号