常用冲压工艺基本原理

上传人:d****y 文档编号:93776766 上传时间:2019-07-27 格式:PPT 页数:37 大小:3.53MB
返回 下载 相关 举报
常用冲压工艺基本原理_第1页
第1页 / 共37页
常用冲压工艺基本原理_第2页
第2页 / 共37页
常用冲压工艺基本原理_第3页
第3页 / 共37页
常用冲压工艺基本原理_第4页
第4页 / 共37页
常用冲压工艺基本原理_第5页
第5页 / 共37页
点击查看更多>>
资源描述

《常用冲压工艺基本原理》由会员分享,可在线阅读,更多相关《常用冲压工艺基本原理(37页珍藏版)》请在金锄头文库上搜索。

1、常用冲压工艺基本原理,制作:工程部,版本:A/1,第一讲:冲裁,一、冲裁 1、冲裁变形过程: 根据实测到的冲裁力曲线,并经过对冲裁变形的观察与分析,冲裁变形全过程可以分为以下6个阶段 。 冲裁变形过程中,材料经受各个变形阶段的作用与特征及其对冲裁加工之实现诸方面的主要影响见下表。 冲裁变形过程各阶段的特征与影响,冲裁变形全过程的6个阶段,所反映的分别是模具工作的冲击压缩阶段、压入剪切阶段、裂缝生长阶段、突然分离阶段、一部分材料推出凹模阶段、另一部分材料卸离冲头阶段等6个阶段。 冲裁变形过程中各个变形阶段的变形情况及其位置关系如下图所示: a)、冲击压缩 b)、压入剪切 c)、裂缝生长 d)、突

2、然分离 e)、推出凹模 f)、卸离冲头,2、冲裁变形区与受力分析 (1)、冲裁变形区是指材料被分离断开的那一部分区域,但具体的模型未有统一的认识。现公认的有纺锤形变形区(如下左图)和8字形变形区(如下中图) (2)、变形区及邻域的应力分析 (a)、冲裁力造成的应力:如下右图所示,冲裁变形时,于冲头平面下方、凹模平面上方的材料,由于分别受到模具直接传递的高压作用,成为压应力区。同时,材料的塌角处,既要支撑变形区又因摩擦力的作用而受到拉伸,成为拉应力区。 (b)、力偶引起的(弯曲)应力: 讨论这种应力时,首先应分清冲裁时模具结构上 加压料板和不加压料板有所不同,如右图所示。,3、冲裁变形过程中力的

3、计算 在纯剪切的场合,剪切变形的屈服应力为拉伸变形屈服应力的1/2。虽然可以推论出剪切抗力是抗拉强度的1/2,但因冲裁时变形范围较大,它并不是一种纯剪切,在其剪切变形中包含有拉伸、压缩、弯曲等作用,还有工具与材料间的摩擦影响等,因此,冲裁时的剪切抗力大于这种比值。实际上作为经验数值,常取抗剪强度为抗拉强度的0.8倍,即=0.8b 冲剪力 F剪切= * t * L 式中: 材料抗剪强度(kg/mm2) t 材料厚度(mm) L 剪切形状的周长(mm) 卸料力 F卸料=6%冲剪力 4、冲裁件的质量 (1)、冲裁断面 如下图所示,冲裁件的断面是由4个部分组成的: a、塌角(一端圆角部分) b、剪切面

4、(紧挨圆角的较光洁面部分) c、断裂面(粗糙表面部分) d、毛刺(另一端高出板平面部分),(2)、冲裁件的精度 关于冲裁件的精度问题,主要表现在以下三个方面: (a)、弯拱:从冲裁过程的受力与变形分析中得知,材料受到弯曲力偶的作用, 因而冲裁件会有弯拱出现,严重的会看到明显的挠度存在。 一般预防弯拱的错施是:对于冲孔件,在模具结构上增设压料扳;若是落料件,则在凹模孔中加顶料板。 弯拱的深度即弯拱挠度取决于材料的特性。容易弯曲变形的材料、加工硬化指数大的材料,其弯拱较大。另外,间隙愈大,弯拱也愈大。 (b)、尺寸精度:冲裁件的尺寸精度是指冲裁件的实际尺寸与公称尺寸之差,差值愈小,表明尺寸精度愈高

5、。除了模具制造偏差外,这个差值主要是指冲裁件相对于模具尺寸的偏差。比如,冲裁时所得到的外径尺寸,如果与凹模孔径尺寸相同,则认为其尺寸精度好。但实际上工件的外径与凹模孔径尺寸往往有百分之几毫米的偏差。这是因冲裁后的弹性回复所致。冲裁件外径尺寸的最大处位于剪切面与断裂面的分界处,假如该分界线在材料中性面层以上时,弹复后则尺寸增大;反之,在中性面层以下时,则尺寸减小。 (c)、斜度:冲裁件由于弯曲变形的残留和弹复,其剪切面(带)上会存在有斜度 或叫锥度。实际上即便没有弯拱发生的某些材料冲裁件断面也仍有某种程度的斜度存 在。,5、间隙对冲裁加工的影响 (1)、间隙对冲裁件断面的影响:小间隙冲裁时,工件

6、的剪切面较大,可超过断面厚度的1/2以上甚至有二次剪切面(但普通冲裁很少采用接近于零的间隙值);适中间隙的剪切面一般占断面的1/31/2;间隙太大,则剪切面变小,塌角增大,毛刺也增大。 (2)、间隙对冲件精度的影响:研究表明,间隙对冲裁件弯拱影响的一般规律为:小间隙时,弯拱较大;间隙为(5%15%)t时弯拱较小;往后,随着间隙的增大弯拱挠度又增大。冲裁件断面锥度是随着间隙的增大而不断增大的。 (3)、间隙对模具寿命的影响:一般地说,间隙愈小,模具作用的压应力愈大,磨损愈严重,寿命愈低。间隙过小造成模具因胀裂而报废的怀况也时有发生。而间隙太大时,模具因受到的拉应力作用增大会使模具磨损又变严重,故

7、模具寿命反而又变短。 模具寿命是一个受各种因素综合影响、相当复杂的问题,间隙只是其中一个因素,而不是唯一因素。 (4)、间隙对加工能量的影响:从节省加工能量的角度出发,采用中等间隙是最好的,可降低冲裁力、冲裁功,减小推料力、卸料力及模具的侧压力。,(表) 冲裁间隙分类,(表) 冲裁间隙的选取(惠州安特科技),6、减小冲裁力的设计 (1)、斜刃模冲裁:斜刃口模具冲裁过程,如同斜刃口剪板机剪切板料一样,材料是逐渐地一部分一部分地剪断分离的,因此,它比平端面刃口冲裁减少很多。为了得到平整零件,落料时冲头应成平状,凹模加工成斜刃;冲孔时则相反,凹模成平状,冲头加工成斜刃。如下图a、b所示。 a)、斜刃

8、落料 b)、斜刃冲孔 c)、阶梯形布置冲头 (2)、阶梯形布置冲头冲裁:在多冲头模冲裁时,将各冲头加工成不同的高度,见上图c,可使各个冲裁力的峰值不至于同时出现,于是降低了总冲裁力。,在采用阶梯形布置冲头的设计时应当注意以下几个问题: a、阶梯形冲头的高度差H只要稍大于冲裁件断面之剪切面高度即可; b、先开始工作的冲头最好带有导正销; c、一般先冲大孔,再冲小孔,这样可以使小直径的冲头做得尽量短一些,增加其抗 压失稳的能力;但如果先冲小孔,再冲大孔,则有可能更符合压力机的力-行程曲线; d、在设计时还应注意模具的对称性,以减小压力中心和偏移。 (3)、加热冲裁:材料加热后,其抗剪强度和抗拉强度

9、大为降低,从而能降低冲裁力。这种方法在铁道机车工厂及一些小型机械修配厂有所采用。但加热冲裁操作麻烦且准备工作困难,故应用范围并不广泛。,第二讲:弯曲与翻边,一、弯曲 1、种类:L形弯曲,V形弯曲, U形弯曲, Z形弯曲等; 2、特征参数: t材料厚度; B弯曲高度; BL弯曲线长度; Ri 弯曲内圆角半径; Ro弯曲外圆角半径; 弯曲时,内角部位存在压缩应力,外角部位存在拉伸 应力,在拉伸和压缩应力的共同作用下,角部材料变薄。因此在计算弯曲展开长度时我们就必须引入弯曲中性层系数k。 2.1:弯曲展开长度计算 弯曲展开长 L L1+L2+L3;其中L2/2(Ri + k*t) 2.2:弯曲力、压

10、料力的计算 弯曲力F弯曲0.40 * BL* t * 压料力F压料0.13 * BL* t * 其中:材料的抗剪强度(kg/mm2),2.3:影响特征效果的主要因素: (1)、材料的特性(如屈服强度、杨氏模量) (2)、材料的厚度公差 (3)、弯曲内径对材料厚度的比值 (4)、弯曲结构 (5)、弯曲线的方向 2.4:现有产品特征参数范围: 3、根据材料厚度、尺寸及公差分类: 3.1:材料厚度小于1.5mm 3.1.1:具体参数范围,3.1.2:展开长度计算 根据实际的弯角形状,我们假定:Ro=Ri+1.3t 通常,展开长度按下列公式计算: :L = A + B + 0.4t;(经验公式)或 :

11、L = L1 + L2 + L3; 其中L2/2(Ri + k*t) 一般Ri的取值为0.3t;对于SPCC材料, 当Ri=0.3t时,k约为0.33; 3.1.3:模具结构参数 右图是标准的90o弯曲设计,各参数按下表 来选取: 仅当弯曲高度公差小于或等于0.06时,才使用 高度限位块。,3. 2:材料厚度大于或等于1.5mm 3.2.1:具体参数范围 3.2.2:展开长度计算 展开长度计算公式为:L=L1+L3+ /2(Ri + k*t) 中性层系数k的取值见下表: 3.2.3:模具结构参数(见右图) (1):弯头结构参数(见下图) 材质 :DC53 外形尺寸应考虑其强度和刚度。,(2):

12、压肩镶块结构参数(见右图) 材质:DC53 VCM产品弯曲时,在弯曲高度和弯曲 宽度上应同时限位。 3.3:弯曲高度小于1.5t 3.3.1:具体参数范围 3.3.2:该特征所面临的问题 原因在于弯曲直边短,弯曲根部堆积的材料未来的及被弯曲边所吸收时,弯曲过程结 束。同时由于弯头在弯曲过程中对弯脚顶部材料产生挤压,端部厚度小于材料厚度t。 见图:,弯曲后直边不满足要求,3.3.3:该特征设计改进方案 (1):弯曲外侧打U型槽(见下图) A 、模具结构参数 该U型槽为半圆形,即COINING冲头半径为Hp。 B、模具结构参数可查表:,(2):弯曲线内侧打V型槽(见下图) A 、模具结构参数 B、

13、弯曲完成后外观比较好,但弯曲线内侧有缝隙,油污清洗不尽,可能产生电 不良。,二、翻边 翻边是将金属平板坯或半成品工序的某一部分,沿其一定的轮廓线使其内法兰部分变大、成为有竖边边缘零件的冲压成形方法。也有不变成竖边,只把坯料中某一部分的孔加以扩大的。圆孔翻边是翻边的基本形式,亦有叫翻孔的。虽然还有一些翻边形式在变形特点与应力状态上较圆孔翻边要复杂些,但究其基础仍然是圆孔翻边。说翻边是拉伸类冲压成形的典型工序之一,也是基于这个道理。 下面简单介绍一下翻孔成形的一些基本概念及特征参数。 1、翻孔的基本概念: 翻孔是沿内孔周围将材料翻成侧立凸缘的冲压工序。 翻孔一般用作小螺纹底孔、装配时的定位以及接合

14、由薄料(0.6mm以下)制成的零件。 2、翻孔的基本形式: 常见的翻孔形式有如下三种:平面翻孔 拉深件翻孔 拉深后翻孔,3、锥形冲头翻孔特征参数: t材料厚度; Ds1预孔直径; Ds2板材直径; Dp冲头直径; rp冲头圆角半径; a冲头角度; C凸凹模间隙; rd凹模圆角半径; 4、锥形冲头翻孔成形过程: 翻孔时,带圆孔的板材被压料板夹紧,变形区凹模圆角以内,并在凸模轮廓的约束下受到拉应力作用。随着凸模下降,板材上的圆孔不断胀大,凸模下面的材料向侧面转移,直到完全贴靠凹模侧壁,形成直立的竖边。 翻孔过程中,孔缘处只受切向拉应力作用,厚度变薄最为严重,因此,主要危险在孔缘拉裂处。由此也可以说

15、明,翻孔属伸长类变形。,5、翻孔的成形极限: 翻孔的变形程度用翻孔系数 K 表示:K = do/Dm 式中 do:板材上的预孔直径; Dm:翻孔后竖边的中径; 翻孔的成形极限是根据孔缘是否发生破裂来确定。 改善翻孔成形性的措施: (1)、提高材料的塑性。材料延伸率和应变硬化指数n大,K就小,有利于翻孔。 (2)、翻孔孔缘无毛刺和硬化层时,K较小,成形极限较大。为此可在冲孔后进行修整,消除毛刺、撕裂带和硬化层或在冲孔后退火。为消除孔缘表面的硬化,可以用钻削代替冲孔。为了避免毛刺而降低成形极限,翻孔时须将预制孔有毛刺的一面朝向凸模放置。 (3)、用球形、锥形和抛物线形凸模翻孔时,孔缘会被圆滑地张开

16、,变形条件比平底凸模 优越。 (4)、板材相对厚度越大,在断裂前(5)、若翻孔过程中板材外径(法兰部分)可能产生的绝对伸长越大,K越小,成形极限越大。 发生收缩,翻孔就无法进行,这时就要增加一些附加工序,如增大板材外径,防止外径收缩;增加翻孔后再修正外径的工序;或落料后先进行拉深,然后再冲孔、翻孔。 (6)、翻孔高度(包括圆角半径在内)要满足h15r,否则得不到垂直的竖边,为此要增加翻孔高度,翻孔后再对高度进行修整。,6、翻孔成形的影响因素: (1)、模具几何形状和尺寸; a、翻孔冲头接触形状 翻孔冲头对翻孔结果的影响,归根到底,就是在翻孔成形的过程中,冲头与板材接触部分对翻孔的影响。 在翻孔成形的过程中,冲头与板材曾经接触的部分,称为冲头接触形状。 对于一定厚度的板材,冲头接触形状由冲头圆角半径、冲头角度以及预孔半径共同决定。显而易见,就整个翻孔成形来说,同一个冲头接触形状,可以有多种

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 机械/制造/汽车 > 机械/模具设计

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号