《一元二次方程的解法习题课教案》由会员分享,可在线阅读,更多相关《一元二次方程的解法习题课教案(2页珍藏版)》请在金锄头文库上搜索。
1、课题名称16.2.10一元二次方程的解法习题课授课类型习题课上课时间教学目标1.知识与技能:复习用提公因式法、公式法、因式分解法、配方法解某些简单的数字系数的一元二次方程;2.过程与方法:能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性。3.情感态度与价值观:养成认真勤奋、独立思考、合作交流的好习惯重点难点教学重点:一元二次方程的各种解法教学难点:根据具体的一元二次方程的特征,灵活选择方程的解法教学方式启发、引导、合作探究技术准备多媒体教学过程(一)课前学习 1、学过的一元二次方程的解法有_、_、_、_ 2、用直接开平方法解的方程,左边是一个_式,特别注意的是方程的
2、两边开平方时,右边要带_号。如(x-2)2=3,两边开平方得x-2=_ 3、用配方法解的方程,首先二次项系数化为_,其次移项使方程的左边是_ 和_右边是_,再次把方程的两边都加上_,最后得到方程的左边是_,可用直接开平方法解方程。 4、用公式法解的方程,首先将方程化为_。其次确定_的值,最后代人求根公式_5、一元二次方程根的判别式是_, 当_时,方程有_的实数根当_时,方程有_的实数根当_时,方程_实数根 6、用因式分解法解的方程的特点是整理后左边易因式分解,右边必是_(二)课上探究1.用不同的方法解一元二次方程3 x2-5x-2=0(配方法,公式法,因式分解法)2、把下列方程的最简洁法选填在
3、括号内。 (A)直接开平方法 (B) 配方法 (C) 公式法 (D)因式分解 (1)7x-3=2 x2 ( ) (2)4(9x-1) 2=25 ( ) (3)(x+2)(x-1)=20 ( ) (4) 4x2+7x=2 ( ) (5)2(0.2t+3) 2-12.5=0 ( ) (6) x2+2 x-4=0 ( ) 3.将下列方程化成一般形式,在选择恰当的方法求解。 (1)3x2=x+4 (2) (2x+1)(4x-2)=(2x-1) 2+2 (3) (x+3)(x-4)=-6 (4) (x+1) 2-2(x-1) 2=6x-5(三)知识运用例:选择适当的方法解方程1、x2+2x=3x(x+1
4、) 2、y(y-4)=4(y-1) 3、2x2-2x+3=0 (四)拓展提高阅读材料,解答问题: 材料:为解方程(x2-1) 2-5(x2-1) 2+4=0, 我们可以视(x2-1)为一个整体,然后设x2-1=y,原方程可化为y 2-5y+4=0.解得y1=1,y2=4。当y1=1时,x2-1=1 即x2=2, x= .当y2=4时,x2-1=4即x2=5, x=。原方程的解为x1= ,x2=- ,x3= x4=- 解答问题:(1)填空:在由原方程得到的过程中利用_法,达到了降次的目的,体现_的数学思想。(2)解方程x4-x2-6=0.(六)课堂小结(1)说说你对解一元一次方程、二元一次方程组、一元二次方程的认识(2)三种方法(配方法、公式法、因式分解法)的联系与区别:作业设计教学反思