算法设计与分析电子教案第2章递归与分治策略

上传人:E**** 文档编号:91095459 上传时间:2019-06-21 格式:PPT 页数:55 大小:444.50KB
返回 下载 相关 举报
算法设计与分析电子教案第2章递归与分治策略_第1页
第1页 / 共55页
算法设计与分析电子教案第2章递归与分治策略_第2页
第2页 / 共55页
算法设计与分析电子教案第2章递归与分治策略_第3页
第3页 / 共55页
算法设计与分析电子教案第2章递归与分治策略_第4页
第4页 / 共55页
算法设计与分析电子教案第2章递归与分治策略_第5页
第5页 / 共55页
点击查看更多>>
资源描述

《算法设计与分析电子教案第2章递归与分治策略》由会员分享,可在线阅读,更多相关《算法设计与分析电子教案第2章递归与分治策略(55页珍藏版)》请在金锄头文库上搜索。

1、第2章 递归与分治策略,将要求解的较大规模的问题分割成k个更小规模的子问题。,算法总体思想,n,T(n/2),T(n/2),T(n/2),T(n/2),T(n),=,对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止。,算法总体思想,对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止。,n,T(n),=,将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。,算法总体思想,将求出的小规模的问题的解合并为

2、一个更大规模的问题的解,自底向上逐步求出原来问题的解。,n,T(n),=,算法总体思想,将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。,分治法的设计思想是,将一个难以直接解决的大问题, 分割成一些规模较小的相同问题,以便各个击破, 分而治之。 凡治众如治寡,分数是也。 -孙子兵法,2.1 递归的概念,直接或间接地调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。 由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直

3、接求出其解。这自然导致递归过程的产生。 分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。,下面来看几个实例。,2.1 递归的概念,例1 阶乘函数 阶乘函数可递归地定义为:,边界条件,递归方程,边界条件与递归方程是递归函数的二个要素,递归函数只有具备了这两个要素,才能在有限次计算后得出结果。,2.1 递归的概念,例2 Fibonacci数列 无穷数列1,1,2,3,5,8,13,21,34,55,被称为Fibonacci数列。它可以递归地定义为:,边界条件,递归方程,第n个Fibonacci数可递归地计算如下: public static int fibonacci

4、(int n) if (n = 1) return 1; return fibonacci(n-1)+fibonacci(n-2); ,2.1 递归的概念,例3 Ackerman函数 当一个函数及它的一个变量是由函数自身定义时,称这个函数是双递归函数。 Ackerman函数A(n,m)定义如下:,2.1 递归的概念,例3 Ackerman函数 前2例中的函数都可以找到相应的非递归方式定义:,但本例中的Ackerman函数却无法找到非递归的定义。,2.1 递归的概念,例3 Ackerman函数 A(n,m)的自变量m的每一个值都定义了一个单变量函数: M=0时,A(n,0)=n+2 M=1时,A

5、(n,1)=A(A(n-1,1),0)=A(n-1,1)+2,和A(1,1)=2故A(n,1)=2*n M=2时,A(n,2)=A(A(n-1,2),1)=2A(n-1,2),和A(1,2)=A(A(0,2),1)=A(1,1)=2,故A(n,2)= 2n 。 M=3时,类似的可以推出 M=4时,A(n,4)的增长速度非常快,以至于没有适当的数学式子来表示这一函数。,2.1 递归的概念,例3 Ackerman函数 定义单变量的Ackerman函数A(n)为,A(n)=A(n,n)。 定义其拟逆函数(n)为:(n)=minkA(k)n。即(n)是使nA(k)成立的最小的k值。 (n)在复杂度分析

6、中常遇到。对于通常所见到的正整数n,有(n)4。但在理论上(n)没有上界,随着n的增加,它以难以想象的慢速度趋向正无穷大。,2.1 递归的概念,例4 排列问题 设计一个递归算法生成n个元素r1,r2,rn的全排列。,设R=r1,r2,rn是要进行排列的n个元素,Ri=R-ri。 集合X中元素的全排列记为perm(X)。 (ri)perm(X)表示在全排列perm(X)的每一个排列前加上前缀得到的排列。R的全排列可归纳定义如下:,当n=1时,perm(R)=(r),其中r是集合R中唯一的元素; 当n1时,perm(R)由(r1)perm(R1),(r2)perm(R2),(rn)perm(Rn)

7、构成。,2.1 递归的概念,例5 整数划分问题 将正整数n表示成一系列正整数之和:n=n1+n2+nk, 其中n1n2nk1,k1。 正整数n的这种表示称为正整数n的划分。求正整数n的不 同划分个数。 例如正整数6有如下11种不同的划分: 6; 5+1; 4+2,4+1+1; 3+3,3+2+1,3+1+1+1; 2+2+2,2+2+1+1,2+1+1+1+1; 1+1+1+1+1+1。,(2) q(n,m)=q(n,n),mn; 最大加数n1实际上不能大于n。因此,q(1,m)=1。,(1) q(n,1)=1,n1; 当最大加数n1不大于1时,任何正整数n只有一种划分形式, 即,(4) q(

8、n,m)=q(n,m-1)+q(n-m,m),nm1; 正整数n的最大加数n1不大于m的划分由n1=m的划分和 n1n-1 的划分组成。,(3) q(n,n)=1+q(n,n-1); 正整数n的划分由n1=n的划分和n1n-1的划分组成。,2.1 递归的概念,例5 整数划分问题 前面的几个例子中,问题本身都具有比较明显的递归关系,因而容易用递归函数直接求解。 在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。,2.1 递归的概念,例5 整数划分问题 前面的几个例子中,问题

9、本身都具有比较明显的递归关系,因而容易用递归函数直接求解。 在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。,正整数n的划分数p(n)=q(n,n)。,2.1 递归的概念,例6 Hanoi塔问题 设a,b,c是3个塔座。开始时,在塔座a上有一叠共n个圆盘,这些圆盘自下而上,由大到小地叠在一起。各圆盘从小到大编号为1,2,n,现要求将塔座a上的这一叠圆盘移到塔座b上,并仍按同样顺序叠置。在移动圆盘时应遵守以下移动规则: 规则1:每次只能移动1个圆盘; 规则2:任何时刻都不

10、允许将较大的圆盘压在较小的圆盘之上; 规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c中任一塔座上。,在问题规模较大时,较难找到一般的方法,因此我们尝试用递归技术来解决这个问题。,当n=1时,问题比较简单。此时,只要将编号为1的圆盘从塔座a直接移至塔座b上即可。 当n1时,需要利用塔座c作为辅助塔座。此时若能设法将n-1个较小的圆盘依照移动规则从塔座a移至塔座c,然后,将剩下的最大圆盘从塔座a移至塔座b,最后,再设法将n-1个较小的圆盘依照移动规则从塔座c移至塔座b。 由此可见,n个圆盘的移动问题可分为2次n-1个圆盘的移动问题,这又可以递归地用上述方法来做。由此可以设计出解Han

11、oi塔问题的递归算法如下。,2.1 递归的概念,例6 Hanoi塔问题,public static void hanoi(int n, int a, int b, int c) if (n 0) hanoi(n-1, a, c, b); move(a,b); hanoi(n-1, c, b, a); ,思考题:如果塔的个数变为a,b,c,d四个,现要将n个圆盘从a全部移动到d,移动规则不变,求移动步数最小的方案。,递归小结,优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。 缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储

12、空间都比非递归算法要多。,递归小结,解决方法:在递归算法中消除递归调用,使其转化为非递归算法。 1.采用一个用户定义的栈来模拟系统的递归调用工作栈。该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不明显。 2.用递推来实现递归函数。 3.通过Cooper变换、反演变换能将一些递归转化为尾递归,从而迭代求出结果。 后两种方法在时空复杂度上均有较大改善,但其适用范围有限。,分治法的适用条件,分治法所能解决的问题一般具有以下几个特征: 该问题的规模缩小到一定的程度就可以容易地解决; 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质 利用该问题分解出的

13、子问题的解可以合并为该问题的解; 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。,因为问题的计算复杂性一般是随着问题规模的增加而增加,因此大部分问题满足这个特征。,这条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用,能否利用分治法完全取决于问题是否具有这条特征,如果具备了前两条特征,而不具备第三条特征,则可以考虑贪心算法或动态规划。,这条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然也可用分治法,但一般用动态规划较好。,分治法的基本步骤,divide-and-conquer(

14、P) if ( | P | = n0) adhoc(P); /解决小规模的问题 divide P into smaller subinstances P1,P2,.,Pk;/分解问题 for (i=1,i=k,i+) yi=divide-and-conquer(Pi); /递归的解各子问题 return merge(y1,.,yk); /将各子问题的解合并为原问题的解 人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。即将一个问题分成大小相等的k个子问题的处理方法是行之有效的。这种使子问题规模大致相等的做法是出自一种平衡(balancing)子问题的思想,它几乎总是比子问

15、题规模不等的做法要好。,分治法的复杂性分析,一个分治法将规模为n的问题分成k个规模为nm的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:,通过迭代法求得方程的解:,注意:递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当minmi+1时,T(mi)T(n)T(mi+1)。

16、,二分搜索技术,分析:如果n=1即只有一个元素,则只要比较这个元素和x就可以确定x是否在表中。因此这个问题满足分治法的第一个适用条件,分析:比较x和a的中间元素amid,若x=amid,则x在L中的位置就是mid;如果xai,同理我们只要在amid的后面查找x即可。无论是在前面还是后面查找x,其方法都和在a中查找x一样,只不过是查找的规模缩小了。这就说明了此问题满足分治法的第二个和第三个适用条件。,分析:很显然此问题分解出的子问题相互独立,即在ai的前面或后面查找x是独立的子问题,因此满足分治法的第四个适用条件。,给定已按升序排好序的n个元素a0:n-1,现要在这n个元素中找出一特定元素x。 分析:,该问题的规模缩小到一定的程度就可以容易地解决; 该问题可以分解为若干个规模较小的相同问题; 分解出的子问题的解可以合并为原问题的解; 分解出的各个子问题是相互独立的。,二分搜索技术,给定已按升序排好序

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号