基于物联网的无线温度监控系统

上传人:206****923 文档编号:90397789 上传时间:2019-06-11 格式:DOC 页数:20 大小:2.43MB
返回 下载 相关 举报
基于物联网的无线温度监控系统_第1页
第1页 / 共20页
基于物联网的无线温度监控系统_第2页
第2页 / 共20页
基于物联网的无线温度监控系统_第3页
第3页 / 共20页
基于物联网的无线温度监控系统_第4页
第4页 / 共20页
基于物联网的无线温度监控系统_第5页
第5页 / 共20页
点击查看更多>>
资源描述

《基于物联网的无线温度监控系统》由会员分享,可在线阅读,更多相关《基于物联网的无线温度监控系统(20页珍藏版)》请在金锄头文库上搜索。

1、西安邮电大学专业课程设计报告书系部名称:光电子技术系学生姓名: 专业名称:班 级:光电实习时间:2013年6月3日至2013年6月14日 20 基于物联网的无线温度监控系统【一】项目需求分析 承温度、湿度和人类的生产、生活有着密切的关系,同时也是工业生产中最常见最基本的工艺参数,例如机械、电子、石油、化工等各类工业中广泛需要对温度湿度的检测与控制。并且随着人们生活水平的提高,人们对自己的生存环境越来越关注。而空气中温湿度的变化与人体的舒适度和情绪都有直接的影响,所以对温度湿度的检测及控制就非常有必要了。温度是物联系统中一个十分重要的物理量, 对它的测量与控制有十分重要的意义。随着各类物联网的监

2、控日益改善,各类器件的温度控制有了更高的要求,为了满足人们对温度监控与控制, 本文设计了物联网家居系统中基于单片机的无线温度监控系统。随着信息科学与微电子技术的发展, 温度的监控可以利用现代技术使其实现自动化和智能化。本次设计要求利用单片机及zibbee无线传输模块实现无线温度监测系统,实现温控范围调节及其超温范围报警【二】实施方案及本人担的工作 1 .系统总体方案描述系统设计分为2个部分,第一个部分实现温度的检测、显示和发送,第二个部分为数据的接收和显示。第一个设计模块中,利用单片机STC89C52控制温度传感器DS18B20定点检测和处理温度数据,并将当前温度显示在数码管上,接着单片机将采

3、集的温度数据发送给单片机,再通过单片机控制,并将对接收到的温度数据进行一定的转换和处理,然后存放在寄存器中,等待下一步处理,再经过无线发送无线zigbee模块将显示的数据打包发送给第二个模块。第二个设计模块中,同样利用STC89C52单片机作为控制主体,先控制zigbee无线接收模块接收第一个模块发送的数据,然后将接收到数据在上位机上显示,整个过程就是这样。 2. 系统硬件构成系统硬件方面主要由单片机最小系统,温度传感器DS18B20,4位共阳极数码管,还有zigbee无线收发模块,上位机显示模块组成,目的在于实现温度的准确检测和无线收发所检测的温度数据。 3.单片机最小系统设计单片机最小系统

4、的设计主要有五个部分组成,电源电路,复位电路,晶振电路,串口电路和控制主体的STC89C52单片机。电源电路由一个六脚的按键开关,一个1K的电阻,一个10uF的极性电容和一个显示电路供电状态的发光二极管组成。开关为了适应各种情况下能够方便供电,开关外接有一个USB接口和一个DC-5V的标准电源接口作为供电设备使用。除此之外还设计了一个外接电源接口。电源电路如图2所示。图2 电源电路复位电路组成很简单,仅仅有4个小器件构成,一个是作为复位控制的四脚按键,一个10uF的极性电容,还有两个电阻,阻值分别为1K和10K。电路与单片机的RST端口连接,电路上电后,按下按键控制系统复位。具体电路如图3所示

5、:图3 复位电路晶振电路更为简单,只有3个器件,一个11.0592Hz的晶振外加二个30PF的普通电容组成,晶振两端分别与单片机的XTAL1和XTAL2口相接。电路如图4所示:图4 晶振电路串口电路主要利用MAX232来实现,MAX232是美信公司设计的一款单电源电平转换芯片,在本次设计中的使用的方法是在MAX232的1和3管脚之间,4和5管脚之间,2和16管脚之间,6和15管脚之间,还有16和16管脚之间全部加上一个0.1uF的电容,7和8管脚作为串口输入端,外接一个标准9孔串口母头,9和10管脚作为输出,分别与单片机的P3.0和P3.1连接。这样就构成了与单片机连接,可以进行串口通信的串口

6、电路。具体电路图5所示:图5 串口电路单片机最小系统的主体部分使用的是STC89C52单片机,它是美国ATMEL公司生产的低电压,高性能的CMOS 8位单片机,片内寄存器可反复擦洗,含有32个可编程双向I/O口,3个16位定时/计数器,共8个中断源。需要指出且注意的是,单片机在系统设计时,管脚EA要始终接高电平。因为EA接高电平时,单片机读取内部程序存储器。当扩展有外部ROM时,读取完内部ROM后自动读取外部ROM,EA接低电平时,单片机直接读取外部ROM。 而设计中使用的STC89C52是有内部ROM的,所以此引脚始终接高电平。一般在设计单片机最小系统时,大多会加上流水灯和独立键盘的设计,但

7、是在我的毕业设计中把这些部分作了改进。考虑到流水灯和独立键盘这些设计如果完整的加入就会造成一定的浪费,而且由于学校实验室的条件有限,PCB板的刻录存在很多问题,因此这些设备会大大增加硬件调试过程的难度,费时费力。同时,在设计单片机最小系统时,考虑到不加入这些设备的话,以后又有可能需要用到。所以中和上面各种因素,在最小系统的设计部分最后只是增加了二个独立键盘和二个LED发光二极管作为调试或需要时使用,同时,考虑到以后可能还会外接其它设备的介入,为了方便,特意留有两排20脚的单排插针外接端口,这样,设计的最小系统模块在需要时也可以控制其它外接装置。使得设计模块更加灵活多用,不仅仅局限在本次毕业设计

8、中使用,还可以留作以后的开发板学习。最小系统的主体STC89C52如图6所示:图6 STC89C52管脚接线图4.数据显示模块设计数据显示电路使用的是的4位共阳极数码管,其内部结构图如下面图7所示:图7 数码管内部结构图该数码管共有12个管脚,其中11,7,4,2,1,10,5,3管脚分别对应数码管的A,B,C,D,E,F,G,DP段选位,与单片机的P0口连接,对应单片机的P0.0-P0.7口,用来控制数码管显示数值大小,6,8,9,12管脚控制数码管的位选,分别与单片机的P2.0-P2.4口连接,通过单片机指令选择需要显示数据的数码管位。我们知道,在单片机的端口上电后会一直存在高电平,而数码

9、管的位选正好是高电平有效,所以会导致在不需要使用数码管的时候,数码管依然会保持打开状态。通常情况下会在单片机最小系统中使用锁存器与数码管连接,但是在这次设计中没有使用锁存器,而是改用在数码管与单片机端口连接之间加一个PNP三极管的方法,让三极管发射极接电源,基集与单片机端口连接,集电极与数码管连接,这样的设计就会导致单片机端口给低电平时才会选通数码管,不仅方便控制,而且电路设计简单。设计原理图如图8所示:图8 数码管电路5. 信号采集模块设计信号采集部分主要由温度传感器DS18B20进行。 1. DSl8B20基本信息 DSl8B20是美国DALLAS公司推出的智能化数字式温度传感器,全部传感

10、组件及转换电路集成在一个三极管的集成电路中。信息经过单线接口送入DSl8B20或从DSl8B20送出,因此从中央处理器到DSl8B20仅需连接一条线。读,写和完成温度变换所需的电源可以由数据线本身提供,而不需要外部电源。DSl8B20支持“一线总线”接口,测量温度范围为-55+125,在-10+85范围内,精度为0.5。现场温度直接以“单总线”的数字方式传输,大大提高了系统的抗干扰性。DS1820温度传感器外观图和引脚图如图9所示,三个管脚定义如下:10图9 DS18B20外观和引脚图 引脚1接地; 引脚2数字信号输入/输出; 引脚3接高电平5V高电平。1).特征:(1)独特的单线接口。只需1

11、个接口引脚即可通信(2)多个能力使分布式温度检测应用得以简化(3)不需要外部组件(4)可用数据线供电(5)不需备份电源(6)测温范围从-55+125,增量值为0.5(7)以9位数字值方式读出温度(8)用户可定义的,非易失性的温度告警设置(9)告警搜索命令识别和寻址温度在编定的极限之外的器件(温度告警情况)2).引脚定义:(1)DQ为数字信号输入/输出端;(2)GND为电源地;(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。3)内部结构DSl8B20内部有四个主要部分: 64位光刻ROM数据存储器 温度传感器 非易失性电可擦写温度报警触发器TH、TL 非易失性电可擦写设置寄存器。除

12、此之外还有告诉缓存存储器。器件只有3根外部引脚,其中VDD和GND为电源引脚,另一根DQ线则用作O总线,因此称为一线式数据总线。与单片机接口的每个IO口可挂接多个DQVDD图3.7 DS18B20内部结构(1)DS18B20内部4个主要的数据部件介绍: 光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20序列号都各不相同,这样就可以实现一根总线上挂

13、接多个DS18B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625/LSB形式表达,其中S为符号位。bit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0LS Byte232221202-12-22-32-4表3.4 DS18B20的温度格式表bit 15bit 14bit 13bit 12bit 11bit 10bit 9bit 8MS ByteSSSSS262524这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度

14、大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。DS18B20的温度格式如表3.4所示。 DS18B20温度传感器的存储器 DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。 配置寄存器该字节各位的意义如表3.6:表3.6 配置寄存器结构TMR1R011111低五位一直都是1 ,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用户不要

15、去改动。R1和R0用来设置分辨率,如表3.7所示:(DS18B20出厂时被设置为12位)表3.7 温度值分辨率设置表R1R0分辨率温度最大转换时间009位93.75ms0110位187.5ms1011位375ms1112位750ms(2)高速暂存存储器高速暂存存储器由9个字节组成,其分配如表2.6所示。当温度转换命令发布后,经转换所得的温度值以二字节补码形式存放在高速暂存存储器的第0和第1个字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式如表1所示。对应的温度计算:当符号位S=0时,直接将二进制位转换为十进制;当S=1时,先将补码变为原码,再计算十进制值。第九个字节是冗余检验字节。表3.8 DS18B20暂存寄存器分布寄

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号