3898 化学动力学jifena nbsp 2010年07月28

上传人:小** 文档编号:89120089 上传时间:2019-05-18 格式:DOC 页数:7 大小:23.50KB
返回 下载 相关 举报
3898 化学动力学jifena nbsp  2010年07月28_第1页
第1页 / 共7页
3898 化学动力学jifena nbsp  2010年07月28_第2页
第2页 / 共7页
3898 化学动力学jifena nbsp  2010年07月28_第3页
第3页 / 共7页
3898 化学动力学jifena nbsp  2010年07月28_第4页
第4页 / 共7页
3898 化学动力学jifena nbsp  2010年07月28_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《3898 化学动力学jifena nbsp 2010年07月28》由会员分享,可在线阅读,更多相关《3898 化学动力学jifena nbsp 2010年07月28(7页珍藏版)》请在金锄头文库上搜索。

1、3898 化学动力学jifena nbsp 2010年07月283898.化学动力学2010年07月28日 简介 化学动力学也称反应动力学、化学反应动力学,是物理化学的一个分支,是研究化学过程进行的速率和反应机理的物理化学分支学科。它的研究对象是性质随时间而变化的非平衡的动态体系。 相关书籍 它的主要研究领域包括:分子反应动力学、催化动力学、基元反应动力学、宏观动力学、表观动力学等,也可依不同化学分支分类为有机反应动力学及无机反应动力学。化学动力学往往是化工生产过程中的决定性因素。 时间是化学动力学的一个重要变量。经典的化学动力学实验方法不能制备单一量子态的反应物,也不能检测由单次反应碰撞所产

2、生的初生态产物。体系的热力学平衡性质不能给出化学动力学的信息,全面认识一个化学反应过程并付诸实现,不能缺少化学动力学研究。 原则上,如果能从量子化学理论计算出反应体系的正确的势能面,并应用力学定律计算具有代表性的点在其上的运动轨迹,就能计算反应速率和化学动力学的参数。但是,除了少数很简单的化学反应以外,量子化学的计算至今还不能得到反应体系的可靠的、完整的势能面。因此,现行的反应速率理论仍不得不借用经典统计力学的处理方法。这样的处理必须作出某种形式的平衡假设,因而使这些速率理论不适用于非常快的反应。尽管对于衡假设的适用性研究已经很多,但完全用非平衡态理论处理反应速率问题尚不成熟。 经典的化学动力

3、学实验方法不能制备单一量子态的反应物,也不能检测由单次反应碰撞所产生的初生态产物。分子束(即分子散射),特别是交叉分子束方法对研究化学元反应动力学的应用,使在实验上研究单次反应碰撞成为可能。分子束实验已经获得了许多经典化学动力学无法取得的关于化学元反应的微观信息,分子反应动力学是现代化学动力学的一个前沿阵地。 体系的热力学平衡性质不能给出化学动力学的信息。例如,对以下反应:2H2(气) O2(气)2H2O(气)尽管H2、O2和H2O的所有热力学性质都已准确知道,但只能预言H2和O2生成H2O的可能性,而不能预言H2和O2在给定的条件下能以什么样的反应速率生成H2O,也不能提供 H2分子和O2分

4、子是通过哪些步骤结合为H2O分子的信息。所以,全面认识一个化学反应过程并付诸实现,不能缺少化学动力学研究。研究历史 20世纪前半叶,大量的研究工作都是对这些参数的测定、理论分析以及利用参数来研究反应机理。但是,反应机理的确认主要依赖于检出和分析反应中间物的能力。20世纪后期,自由基链式反应动力学研究的普遍开展,给化学动力学带来两个发展趋向:一是对元反应动力学的广泛研究;二是迫切要求建立检测活性中间物的方法,这个要求和电子学、激光技术的发展促进了快速反应动力学的发展。对暂态活性中间物检测的时间分辨率已从50年代的毫秒级提高到皮秒级。研究方法 化学动力学的研究方法有: 唯象动力学研究方法,也称经典

5、化学动力学研究方法,它是从化学动力学的原始实验数据浓度c与时间t的关系出发,经过分析获得某些反应动力学参数反应速率常数 k、活化能Ea、指前因子A。用这些参数可以表征反应体系的速率特征,常用的关系式有:常用的关系式式中r为反应速率;A、B、C、D为各物质的浓度;、称为相对于物质A、B、C、D的级数;R为气体常数;T 为热力学温度。 化学动力学参数是探讨反应机理的有效数据。20世纪前半叶,大量的研究工作都是对这些参数的测定、理论分析以及利用参数来研究反应机理。但是,反应机理的确认主要依赖于检出和分析反应中间物的能力。20世纪后期,自由基链式反应动力学研究的普遍开展,给化学动力学带来两个发展趋向:

6、一是对元反应动力学的广泛研究;二是迫切要求建立检测活性中间物的方法,这个要求和电子学、激光技术的发展促进了快速反应动力学的发展。对暂态活性中间物检测的时间分辨率已从50年代的毫秒级变为皮秒级。 分子反应动力学研究方法,从微观的分子水平来看,一个元化学反应是具有一定量子态的反应物分子间的互相碰撞,进行原子重排,产生一定量子态的产物分子以至互相分离的单次反应碰撞行为。用过渡态理论解释,它是在反应体系的超势能面上一个代表体系的质点越过反应势垒的一次行为。原则上,如果能从量子化学理论计算出反应体系的正确的势能面,并应用力学定律计算具有代表性的点在其上的运动轨迹,就能计算反应速率和化学动力学的参数。但是

7、,除了少数很简单的化学反应以外,量子化学的计算至今还不能得到反应体系的可靠的完整的势能面。因此,现行的反应速率理论(如双分子反应碰撞理论、过渡态理论)仍不得不借用经典统计力学的处理方法。这样的处理必须作出某种形式的平衡假设,因而使这些速率理论不适用于非常快的反应。尽管对平衡假设的适用性研究已经很多,但完全用非平衡态理论处理反应速率问题尚不成熟。化学动力学示意图 在60年代,对化学反应进行分子水平的实验研究还难以做到。经典的化学动力学实验方法不能制备单一量子态的反应物,也不能检测由单次反应碰撞所产生的初生态产物。分子束(即分子散射),特别是交叉分子束方法对研究化学元反应动力学的应用,使在实验上研

8、究单次反应碰撞成为可能。分子束实验已经获得了许多经典化学动力学无法取得的关于化学元反应的微观信息,分子反应动力学是现代化学动力学的一个前沿阵地。它应用现代物理化学的先进分析方法,在原子、分子的层次上研究不同状态下和不同分子体系中单分子的基元化学反应的动态结构,反应过程和反应机理。它从分子的微观层次出发研究基元反应过程的速率和机理,着重于从分子的内部运动和分子因碰撞而引起的相互作用来观察化学基元过程的动态学行为。中科院大连化学物理研究所分子反应动力学国家重点实验室在这方面研究有突出的贡献。 网络动力学研究方法,它对包括几十个甚至上百个元反应步骤的重要化工反应过程(如烃类热裂解)进行计算机模拟和优

9、化,以便进行反应器最佳设计的研究。用途 利用化学动力学原理可以:( 1 )研究药物降解的机理;( 2 )研究影响药物降解的因素及稳定化措施;( 3 )预测药物制剂的有效期。 (一)反应速度、反应速度常数、反应级数 1 、反应速度 反应速度常用单位时间内、单位体积中反应物浓度的减少或生成物浓度的增加来表示: -dC/dt ,式中 C 为时间反应物的浓度,负号表示反应物的浓度逐渐减少。 2 、反应速度常数 根据质量作用定律,反应速度与反应物浓度之间有下列关系: -dC/dt KC ( 4-1 ) 式中 K 为反应速度常数,是指各反应物为单位浓度时的反应速度,单位为 时间 -1 ,其大小与反应温度有

10、关。 K 值越大,表示反应物的活泼程度越大,药物制剂越不稳定。 3 、反应级数 式( 4-1 )中的为反应级数,是各反应物所有浓度项的总和,表示反应速度随反应物浓度的变化而改变的方式。大多数药物的降解过程可以用零级和假零级反应、一级和假一级反应来处理。 ( 1 )零级和假零级反应 若反应速度与反应物的浓度无关,这种反应称为零级反应。如光化反应中反应物对光的吸收,其反应速度与反应物的浓度无关。 混悬液中药物的降解仅与溶液相中的药物量即药物的溶解度有关,而与混悬的固体药量无关;当药物降解后,固体相中的药物就溶解补充到溶液相中,保持溶液中的药量不变;而药物的溶解度为常数,故这类降解反应也为零级反应,

11、但与真正的零级反应有所不同,故为假零级反应。 根据式( 4-1 )可知,零级反应的 0 ,则零级反应速度方程式为: -dC/dt K ( 4-2 ) 其积分式为: C -Kt C 0 ( 4-3 ) ( 2 )一级反应和假一级反应 若反应速度与反应物浓度的一次方成正比,则称为一级反应。大多数药物以一级反应降解。 根据式( 4-1 )可知,一级反应的 1 ,则零级反应速度方程式为: -dC/dt K C ( 4-4 ) 其积分式为: lgC -(Kt/2.303) lgC 0 ( 4-5 ) 二种或二种以上反应物参加反应,当一种反应物浓度远超过另一种反应物浓度,或在反应中浓度基本不变时,该反应物

12、的浓度可近似地看成为常数,故从形式上看为一级反应,但实际上有二种反应物参加反应,称为假一级反应。如用缓冲溶液调节 pH 值时,缓冲溶液中离子浓度(如 H )远高于药物浓度,其降解反应为假一级反应。 (二)有效期、半衰期 1 、有效期 药剂学中的有效期是指制剂中的药物降解 10% 所需的时间,常用 0.9 表示。 根据( 4-5 )可得,一级反应的有效期为: 0.9 0.1054/K ( 4-6 ) 2 、半衰期 药剂学中的半衰期是指制剂中的药物降解 50% 所需的时间,常用 1/2 表示。 根据( 4-5 )可得,一级反应的有效期为: 1/2 0.693/K ( 4-7 )与化学热力学区别 化

13、学动力学是研究化学过程进行的速率和反应机理的物理化学分支学科。 化学动力学与化学热力学不同,不是计算达到反应平衡时反应进行的程度或转化率,而是从一种动态的角度观察化学反应,研究反应系统转变所需要的时间,以及这之中涉及的微观过程。化学动力学与热力学的基础是统计力学、量子力学和分子运动论。 它的研究对象是性质随时间而变化的非平衡的动态体系。化学热力学是物理化学和热力学的一个分支学科,它主要研究物质系统在各种条件下的物理和化学变化中所伴随着的能量变化,从而对化学反应的方向和进行的程度作出准确的判断。化学热力学是建立在三个基本定律基础上发展起来的。热力学第一定律就是能量守恒和转化定律,它是许多科学家实

14、验总结出来的。 动力学是理论力学的分支学科,研究作用于物体的力与物体运动的关系。动力学的研究对象是运动速度远小于光速的宏观物体。原子和亚原子粒子的动力学研究属于量子力学;可以比拟光速的高速运动的研究则属于相对论力学。动力学是物理学和天文学的基础,也是许多工程学科的基础。许多数学上的进展常与解决动力学问题有关,所以数学家对动力学有浓厚的兴趣。主要概念反应速率 反应速率是化学反应快慢程度的量度,广义地讲是参与反应的物质的量随时间的变化量的绝对值,分为平均速率与瞬时速率两种。平均速率是反应进程中某时间间隔(t)内参与反应的物质的量的变化量,可用单位时间内反应物的减少量或生成物的增加量来表示;瞬时速率

15、是浓度随时间的变化率,即浓度-时间图像上函数在某一特定时间的切线斜率。反应平衡 反应平衡:热力学研究反应达到反应平衡时的状态。在可逆反应中,反应物与产物达到动态平衡,正向反应与逆向反应的速率相等,反应物与产物的浓度不再发生变化。它可通过哈伯法合成氨、化学振荡反应如Belousov-Zhabotinsky反应(B-Z反应)、碘钟反应等多组分反应过程来进行演示。反应机理 反应机理:虽然化学方程式中各物质的计量比看似简单,但微观上,一个化学反应通常是经过几步完成的,描述化学反应的微观过程的化学动力学分支称为反应机理。反应机理中,每一步反应称作基元反应,基元反应中反应物的分子数总和称为反应分子数。反应机理由一个或多个基元反应所组成,这些基元反应的净反应即为表观上的化学反应。 air rift shoespuma women shoescheap jordanscheap timberland boots

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 管理学资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号