沈阳药科大学生物化学幻灯片——第3章-酶

上传人:F****n 文档编号:88574047 上传时间:2019-05-03 格式:PPT 页数:89 大小:1.46MB
返回 下载 相关 举报
沈阳药科大学生物化学幻灯片——第3章-酶_第1页
第1页 / 共89页
沈阳药科大学生物化学幻灯片——第3章-酶_第2页
第2页 / 共89页
沈阳药科大学生物化学幻灯片——第3章-酶_第3页
第3页 / 共89页
沈阳药科大学生物化学幻灯片——第3章-酶_第4页
第4页 / 共89页
沈阳药科大学生物化学幻灯片——第3章-酶_第5页
第5页 / 共89页
点击查看更多>>
资源描述

《沈阳药科大学生物化学幻灯片——第3章-酶》由会员分享,可在线阅读,更多相关《沈阳药科大学生物化学幻灯片——第3章-酶(89页珍藏版)》请在金锄头文库上搜索。

1、Enzyme,第 三 章 酶,酶的概念,目前将生物催化剂分为两类 酶 、 核酶(脱氧核酶),酶是一类由活细胞产生的,对其特异底物具有高效催化作用的蛋白质。,酶学研究简史,公元前两千多年,我国已有酿酒记载。 一百余年前,Pasteur认为发酵是酵母细胞生命活动的结果。 1877年,Kuhne首次提出Enzyme一词。 1897年,Buchner兄弟用不含细胞的酵母提取液,实现了发酵。 1926年,Sumner首次从刀豆中提纯出脲酶结晶。 1982年,Cech首次发现RNA也具有酶的催化活性,提出核酶(ribozyme)的概念。 1995年,Jack W.Szostak研究室首先报道了具有DNA连

2、接酶活性DNA片段,称为脱氧核酶(deoxyribozyme)。,第一节 酶的分子结构与功能 The Molecular Structure and Function of Enzyme,酶的不同形式,单体酶(monomeric enzyme):仅具有三级结构的酶。 寡聚酶(oligomeric enzyme):由多个相同或不同亚基以非共价键连接组成的酶。 多酶体系(multienzyme system):由几种不同功能的酶彼此聚合形成的多酶复合物。 多功能酶(multifunctional enzyme)或串联酶(tandem enzyme):一些多酶体系在进化过程中由于基因的融合,多种不同

3、催化功能存在于一条多肽链中,这类酶称为多功能酶。,一、 酶的分子组成,*各部分在催化反应中的作用,酶蛋白决定反应的特异性 辅助因子决定反应的种类与性质,金属酶(metalloenzyme) 金属离子与酶结合紧密,提取过程中不易丢失。 金属激活酶(metal-activated enzyme) 金属离子为酶的活性所必需,但与酶的结合不甚紧密。,金属离子的作用 稳定酶的构象; 参与催化反应,传递电子; 在酶与底物间起桥梁作用; 中和阴离子,降低反应中的静电斥力等。,小分子有机化合物的作用 在反应中起运载体的作用,传递电子、质子或其它基团。,小分子有机化合物在催化中的作用,辅助因子分类 (按其与酶蛋

4、白结合的紧密程度),辅酶 (coenzyme): 与酶蛋白结合疏松,可用透析或超滤的方法除去。,辅基 (prosthetic group): 与酶蛋白结合紧密,不能用透析或超滤的方法除去。,二、酶的活性中心,必需基团(essential group) 酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的化学基团。,目 录,或称活性部位(active site),指必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。,酶的活性中心(active center),活性中心内的必需基团,位于活性中心以外,维持酶活性中心应有的空间构象所必需。,活性中心外

5、的必需基团,底 物,活性中心以外的必需基团,结合基团,催化基团,活性中心,目 录,溶菌酶的活性中心,* 谷氨酸35和天冬氨酸52是催化基团;,* 色氨酸62和63、天冬氨酸101和色氨酸108是结合基团;,* AF为底物多糖链的糖基,位于酶的活性中心形成的裂隙中。,第二节 酶促反应的特点与机理 The Characteristic and Mechanism of Enzyme-Catalyzed Reaction,酶与一般催化剂的共同点 在反应前后没有质和量的变化; 只能催化热力学允许的化学反应; 只能加速可逆反应的进程,而不改变反应的平衡点。,(一)酶促反应具有极高的效率,一、 酶促反应的

6、特点,酶的催化效率通常比非催化反应高1081020倍,比一般催化剂高1071013倍。 酶的催化不需要较高的反应温度。 酶和一般催化剂加速反应的机理都是降低反应的活化能(activation energy)。酶比一般催化剂更有效地降低反应的活化能。,活化能:底物分子从初态转变到活化态所需的能量。,一种酶仅作用于一种或一类化合物,或一定的化学键,催化一定的化学反应并生成一定的产物。酶的这种特性称为酶的特异性或专一性。,* 酶的特异性(specificity),(二)酶促反应具有高度的特异性,根据酶对其底物结构选择的严格程度不同,酶的特异性可大致分为以下3种类型:,绝对特异性(absolute s

7、pecificity):只能作用于特定结构的底物,进行一种专一的反应,生成一种特定结构的产物 。 相对特异性(relative specificity):作用于一类化合物或一种化学键。 立体结构特异性(stereo specificity):作用于立体异构体中的一种。,(三)酶促反应的可调节性,对酶生成与降解量的调节 酶催化效力的调节 通过改变底物浓度对酶进行调节等,酶促反应受多种因素的调控,以适应机体对不断变化的内外环境和生命活动的需要。其中包括三方面的调节。,二、酶促反应的机理,(一)酶-底物复合物的形成与诱导契合假说,*诱导契合假说(induced-fit hypothesis),酶底物

8、复合物,酶与底物相互接近时,其结构相互诱导、相互变形和相互适应,进而相互结合。这一过程称为酶-底物结合的诱导契合假说 。,目 录,酶 的 诱 导 契 合 动 画,羧肽酶的诱导契合模式,目 录,(二)酶促反应的机理,1. 邻近效应(proximity effect) 与定向排列(orientation arrange ),2. 多元催化(multielement catalysis) 3. 表面效应(surface effect),第三节 酶促反应动力学 Kinetics of Enzyme-Catalyzed Reaction,概念 研究各种因素对酶促反应速度的影响,并加以定量的阐述。 影响因

9、素包括有 酶浓度、底物浓度、pH、温度、 抑制剂、激活剂等。, 研究一种因素的影响时,其余各因素均恒定。,一、底物浓度对反应速度的影响,单底物、单产物反应 酶促反应速度一般在规定的反应条件下,用单位时间内底物的消耗量和产物的生成量来表示 反应速度取其初速度,即底物的消耗量很小(一般在5以内)时的反应速度 底物浓度远远大于酶浓度,研究前提,在其他因素不变的情况下,底物浓度对反应速度的影响呈矩形双曲线关系。,当底物浓度较低时,反应速度与底物浓度成正比;反应为一级反应。,目 录,随着底物浓度的增高,反应速度不再成正比例加速;反应为混合级反应。,目 录,当底物浓度高达一定程度,反应速度不再增加,达最大

10、速度;反应为零级反应,目 录,(一)米曼氏方程式,中间产物,酶促反应模式中间产物学说,1913年Michaelis和Menten提出反应速度与底物浓度关系的数学方程式,即米曼氏方程式,简称米氏方程式(Michaelis equation)。,S:底物浓度 V:不同S时的反应速度 Vmax:最大反应速度(maximum velocity) m:米氏常数(Michaelis constant),米曼氏方程式推导基于两个假设: E与S形成ES复合物的反应是快速平衡反应,而ES分解为E及P的反应为慢反应,反应速度取决于慢反应即 Vk3ES。 (1) S的总浓度远远大于E的总浓度,因此在反应的初始阶段,

11、S的浓度可认为不变即SSt。,推导过程,稳态:是指ES的生成速度与分解速度相等,即 ES恒定。 K1 (EtES) SK2 ES + K3 ES,则(2)变为: (EtES) S Km ES,当底物浓度很高,将酶的活性中心全部饱和时,即EtES,反应达最大速度 VmaxK3ESK3Et (5),将(5)代入(4)得米氏方程式:,当反应速度为最大反应速度一半时,Km值的推导,KmS,Km值等于酶促反应速度为最大反应速度一半时的底物浓度,单位是mol/L。,(二)Km与Vmax的意义,Km值 Km等于酶促反应速度为最大反应速度一半时的底物浓度。 意义: a) Km是酶的特征性常数之一; b) Km

12、可近似表示酶对底物的亲和力; c) 同一酶对于不同底物有不同的Km值。,Vmax 定义:Vm是酶完全被底物饱和时的反应速度,与酶浓度成正比。,意义:Vmax=K3 E 如果酶的总浓度已知,可从Vmax计算 酶的转换数(turnover number),即动力学常数K3。,定义 当酶被底物充分饱和时,单位时间内每个酶分子催化底物转变为产物的分子数。 意义 可用来比较每单位酶的催化能力。,酶的转换数,(三)m值与max值的测定,1. 双倒数作图法(double reciprocal plot),又称为 林-贝氏(Lineweaver- Burk)作图法,2. Hanes作图法,在林贝氏方程基础上,

13、两边同乘S,S/V=Km/Vmax + S/Vmax,二、酶浓度对反应速度的影响,当SE,酶可被底物饱和的情况下,反应速度与酶浓度成正比。 关系式为:V = K3 E,双重影响 温度升高,酶促反应速度升高;由于酶的本质是蛋白质,温度升高,可引起酶的变性,从而反应速度降低 。,三、温度对反应速度的影响,最适温度 (optimum temperature): 酶促反应速度最快时的环境温度。,* 低温的应用,四、 pH对反应速度的影响,最适pH (optimum pH): 酶催化活性最大时的环境pH。,五、抑制剂对反应速度的影响,酶的抑制剂(inhibitor) 凡能使酶的催化活性下降而不引起酶蛋白

14、 变性的物质称为酶的抑制剂。,区别于酶的变性,抑制剂对酶有一定选择性 引起变性的因素对酶没有选择性,抑制作用的类型,不可逆性抑制 (irreversible inhibition),可逆性抑制 (reversible inhibition):,竞争性抑制 (competitive inhibition) 非竞争性抑制 (non-competitive inhibition) 反竞争性抑制 (uncompetitive inhibition),(一) 不可逆性抑制作用,* 概念 抑制剂通常以共价键与酶活性中心的必需基团相结合,使酶失活。 * 举例 有机磷化合物 羟基酶 解毒 - - - 解磷定(

15、PAM) 重金属离子及砷化合物 巯基酶 解毒 - - - 二巯基丙醇(BAL),有机磷化合物,路易士气,失活的酶,羟基酶,失活的酶,酸,巯基酶,失活的酶,酸,BAL,巯基酶,BAL与砷剂结合物,(二) 可逆性抑制作用,* 概念 抑制剂通常以非共价键与酶或酶-底物复合物可逆性结合,使酶的活性降低或丧失;抑制剂可用透析、超滤等方法除去。,竞争性抑制 非竞争性抑制 反竞争性抑制,* 类型,. 竞争性抑制作用,反应模式,定义 抑制剂与底物的结构相似,能与底物竞争酶的活性中心,从而阻碍酶底物复合物的形成,使酶的活性降低。这种抑制作用称为竞争性抑制作用。,* 特点,抑制程度取决于抑制剂与酶的相对亲和力及底

16、物浓度;,I与S结构类似,竞争酶的活性中心;,动力学特点:Vmax不变,表观Km增大。,* 举例,丙二酸与琥珀酸竞争琥珀酸脱氢酶,磺胺类药物的抑菌机制 与对氨基苯甲酸竞争二氢叶酸合成酶,2. 非竞争性抑制,* 反应模式,* 特点,抑制剂与酶活性中心外的必需基团结合,底物与抑制剂之间无竞争关系;,抑制程度取决于抑制剂的浓度;,动力学特点:Vmax降低,表观Km不变。,. 反竞争性抑制,* 反应模式,* 特点:,抑制剂只与酶底物复合物结合;,抑制程度取决与抑制剂的浓度及底物的浓度;,动力学特点:Vmax降低,表观Km降低。,各种可逆性抑制作用的比较,六、激活剂对反应速度的影响,激活剂(activator) 使酶由无活

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > PPT模板库 > PPT素材/模板

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号