基础医学课件-原子吸收光谱分析课件

上传人:超**** 文档编号:88218499 上传时间:2019-04-21 格式:PPT 页数:32 大小:1.77MB
返回 下载 相关 举报
基础医学课件-原子吸收光谱分析课件_第1页
第1页 / 共32页
基础医学课件-原子吸收光谱分析课件_第2页
第2页 / 共32页
基础医学课件-原子吸收光谱分析课件_第3页
第3页 / 共32页
基础医学课件-原子吸收光谱分析课件_第4页
第4页 / 共32页
基础医学课件-原子吸收光谱分析课件_第5页
第5页 / 共32页
点击查看更多>>
资源描述

《基础医学课件-原子吸收光谱分析课件》由会员分享,可在线阅读,更多相关《基础医学课件-原子吸收光谱分析课件(32页珍藏版)》请在金锄头文库上搜索。

1、原子吸收光谱分析,原子吸收光谱法 Atomic Absorption Spectrometry, (AAS) 原子吸收分光光度法 Atomic Absorption Spectrophotometry, (AAS),原子吸收光谱分析,4/21/2019,( ),1.简述 2.方法原理 3.仪器设备 4.火焰原子化法测试的工作参数选择 5.石墨炉原子化法测试的工作参数选择 6.干扰及消除,原子吸收光谱分析,4/21/2019,第一节.简述,1802年,伍朗斯顿(W. H. Wollaston)在进行太 阳观察时,发现太阳光谱中存在一些暗线。 夫郎霍费(J. Fraunhofer)在1814181

2、7年,布鲁 斯特(D. Brewster) 在1820年相继对这些暗线 进行仔细的观察,认为是由于太阳外围较冷 的气体吸收了太阳光所引起的。,1.原子吸收的发现,原子吸收光谱分析,4/21/2019,4/21/2019,原子吸收光谱分析,4,4/21/2019,原子吸收光谱分析,5,1860年,克希霍夫(G. R. Kirchoff)和本生(R. Bunsen)用钠光灯照射含有食盐的火焰,发现这些火焰对钠光有吸收现象。,他们又对其它几种碱金属以及碱土金属的火焰进行研究,发现它们都对某些特征光线有吸收,并且火焰中受热的钠蒸汽所发射的黄线与太阳光谱暗D线有准确的对应关系,于是他们认为太阳光谱中的暗

3、线由于太阳外围气体中的某些元素吸收了太阳的连续光谱造成的。他们还指出,原子蒸气既能吸收一定波长的光形成特征光谱,也能发射出同样波长的谱线。并进一步指出,在通常情况下,火焰的温度比光源温度低的原子能够吸收来自光源发射的光。,4/21/2019,原子吸收光谱分析,6,4/21/2019,原子吸收光谱分析,7,1952年,澳大利亚物理学家沃尔什(A. Walsh)对原子吸收光谱应用的可行性进行了一系列的研究和实验。1955年他发表了著名的原子吸收光谱在分析化学中的应用的论文,提出了在采用锐线光源的情况下,可以用峰值吸收代替面积吸收,并且进行了详细的理论推导(后面部分我们会有简要介绍)。这就为原子吸收

4、分光光度法奠定了理论基础。同时他还研制了第一台原子吸收分光光度计,即原子吸收光谱仪。 鉴于沃尔什在建立和发展原子吸收光谱分析方面的历史功勋,1991年在挪威卑尔根召开的第27届国际光谱学大会(CSI)上授予他第一届CSI奖。,4/21/2019,原子吸收光谱分析,8,Alan Walsh(1916-1998)和他的原子吸收光谱仪,4/21/2019,原子吸收光谱分析,9,但因这种装置结构过于复杂,操作烦琐,未能获得推广。 1961年美国Perkin-Elmer公司推出了世界上第一台火焰原子吸收分光光度计商品仪。 1965年威廉斯(J. B. Willis)和阿莫斯(Amos)又提出了采用N2O

5、乙炔高温火焰代替空气乙炔火焰测试高温元素氧化物,使原子吸收光谱仪可测定元素扩展到70多种。 1968年,马斯曼(H. Massmann)对里沃夫提出的电加热装置进行了重大改进,采用半封闭条件下使样品溶液在石墨管内低电压大电流直接加热,分阶段将石墨炉温度升至原子化温度,大大简化了石墨炉。,优点: 检出限低 火焰原子吸收法的检出限可达到ng/mL量级,石墨炉原子吸收光谱法的检出限可达到10-1310-14g。 选择性好 由于原子吸收是线状吸收,又采用待测元素特征谱线作为光源,即使在溶液中有多个元素共存,只要它们不与待测元素产生难原子化的化合物,就不会产生较大的谱线干扰。加上吸收谱线比发射谱线少的多

6、,各元素谱线的重叠干扰少,因此选择性好。火焰原子吸收方法由于,4/21/2019,原子吸收光谱分析,10,4.原子吸收光谱分析的特点,谱线干扰带来的误差一般在2%以内,非火焰方法的误差在4%以内。 精密度高 原子吸收光谱法的相对标准偏差一般达到1%没有困难,最好时可以达到0.3%或更好。 抗干扰能力强 原子吸收线数目少,一般不存在共存元素的光谱重叠干扰。干扰主要来自化学干扰。 应用范围广 适用分析的元素范围广,可分析周期表中绝大多数的金属与非金属元素。,2019/4/21,原子吸收光谱分析,11,4/21/2019,原子吸收光谱分析,12, 用样量小 FAAS进样量为3mL/min6mL/mi

7、n,采用微量进样时甚至可以小至10L50L。GFAAS液体进样量为10L20L,固体进样量为毫克量级。 仪器设备相对比较简单,操作简便,易于掌握,( ),缺点 1.单元素测定 每个元素需要特定的空心阴极灯,不能多元素同时测定。 2.线性范围窄 给对未知样品的测定带来不便,有时需多次稀释或浓缩才能满足测试的需求。 3.高温元素准确性差 如Zr,Nb,Ta,Mo,W,稀土等测得的准确性较差,有的仪器甚至不能测定,原因是灵敏度太低。 为克服这些缺点,现在不少厂家也在进行改进。如同时可点亮多个灯,通过程序进行灯与灯的自动切换,利用蠕动泵进行在线稀释等。,2019/4/21,原子吸收光谱分析,13,原子

8、吸收光谱仪的种类很多。如果从原子化系统上划分,可分为火焰原子吸收光谱仪(FAAS)、石墨炉原子吸收光谱仪(GFAAS)和火焰/石墨炉原子吸收光谱仪(G/FAAS)三种。如果从光路上划分,可分为单光束原子吸收光谱仪和双光束原子吸收光谱仪两大类。前面讨论的基本上是单光束原子吸收光谱仪的情形,实际上现在的原子吸收光谱仪基本都是双光束原子吸收光谱仪,其中一束光为检测光束,另一束光为参比光束。由于参比光与检测光处于相同的测试条件下,可有效地克服光源强度漂移带来的变化。,2019/4/21,原子吸收光谱分析,14,5.原子吸收光谱仪的类型,2019/4/21,原子吸收光谱分析,15,2019/4/21,原

9、子吸收光谱分析,16,AA 800原子吸收光谱仪光路图,4/21/2019,原子吸收光谱分析,17,第二节 方法原理 1.方法概述 原子吸收分析方法,是利用呈基态的原子蒸气吸收一定特征的辐射光,在一定的浓度范围内被吸收的光强度与蒸气中自由原子的数目成正比,根据已知浓度的标准的比较,求得待测元素的含量。具体地说,就是首先测定若干个已知浓度的标准溶液中待测元素的吸收强度,按溶液的浓度对吸收强度作工作曲线,再测定未知样品溶液中该元素的吸收强度,然后在此工作曲线上找出该元素的浓度,便完成了样品溶液中某元素含量的分析。若样品经过溶样、稀释或浓缩等预处理,还应根据处理前后的量的变化关系,换算到原样品中去。

10、,原子由原子核和核外电子所组成。原子的能量是量子化的,形成一个一个的能级。在不受到外界扰动的情况下,原子处于稳定的基态。 基态原子受到加热、辐射、其它粒子进行非弹性碰撞时便吸收能量。当辐射频率与原子中的电子由低能态跃迁到高能态所需要的能量E相匹配时,发生吸收,产生该种原子的特征原子吸收光谱。 原子吸收光谱通常位于光谱的紫外区和可见区。,4/21/2019,原子吸收光谱分析,18,2.原子吸收光谱的产生,3.原子吸收光谱的波长 原子吸收光谱的波长和频率由产生跃迁的两能级的能量差E决定: 高能态 其中 -波长 -频率 低能态 c-光速 h-普朗克常数。 原子光谱波长是进行光谱定性分析的依据。,4/

11、21/2019,原子吸收光谱分析,19,4/21/2019,原子吸收光谱分析,20,6.共振线 如果电子是从基态吸收光后跃迁到激发态,我们称这种吸收谱线为共振线(原子发射光谱中也有共振线),如果跃迁到第一激发态,就称之为第一共振线,如果跃迁到第二激发态,就称之为第二共振线,余次类推。由于电子处在基态的原子数目最大,又最容易跃迁到第一激发态,因而一般说来,第一共振线的吸收强度最大,是元素的最灵敏线,也是原子吸收分析中优先选择的谱线。原子中电子间会产生自旋偶合,激发态会出现能级分裂,故第一共振线往往不止一条。,4/21/2019,原子吸收光谱分析,21,如Na元素就有两条第一共振线: 588.99

12、5 nm和589.592 nm。 除了基态电子能够吸收光跃迁到激发态外,较低的激发态电子也能吸收光跃迁到更高能量的激发态。因此,共振线一定是吸收线,但吸收线不一定是共振线。显然,这种激发所占的比例很小,所产生的吸收谱线很弱,一般不能选作进行原子吸收分析的谱线。但对于过渡元素,由于能态的复杂性,会经常出现最灵敏线不是共振线的情况。,8.3实际测量 在实际工作中,对于原子吸收值的测量是以一定光强的单色光I0通过原子蒸气,然后测出被吸收后的光强I,此一吸收过程符合琅伯-比尔(Lambert)定律,即: 式中K为吸收系数,N为自由原子总数(基态原子数),L为吸收层厚度。,22,4/21/2019,原子

13、吸收光谱分析,吸光度A可用下式表示 在实际分析过程中,当实验条件一定时,N正比于待测元素的浓度。,23,4/21/2019,原子吸收光谱分析,( ),4/21/2019,原子吸收光谱分析,24,第三节 仪器设备 原子吸收仪器的种类繁多,型号各异,但从功能上划分,它们都是由光源、原子化系统、分光系统和检测系统等四部分组成。现在的原子吸收仪器增加了计算机控制部分,用于对上述各部分工作状态的控制以及数据的储存和处理。,原子吸收光谱仪各部分功能示意图,4/21/2019,原子吸收光谱分析,25,4/21/2019,原子吸收光谱分析,26,4/21/2019,原子吸收光谱分析,27,1.光源 1.1 A

14、AS对光源的要求 由前面的讨论可知,原子吸收的理想光源必须满足两个条件:一是波长必须单一,二是光源必须有足够的强度。能否利用钨灯或氙灯等连续光源经过光栅分光之后的单色光作为AAS的光源呢?回答是否定的。因为这些光源经过光栅分光之后的单色光很难保证有足够的强度。如果增加光源的功率,势必增加了仪器制造的成本,而且大功率的光强照射道光栅上,对光栅的要求也增加了。因此AAS必须采用专用光源,如空心阴极灯、无机放电灯、激光等,其中空心阴极灯是广泛采用的线光源。,4/21/2019,原子吸收光谱分析,28,1.2 低压空心阴极灯,空心阴极灯是由玻璃制成的封闭着的低压气体放电管。早期的灯窗口根据分析谱线波长

15、的不同选用不同材质的玻璃,谱线波长在可见光区(370 nm以上)选用光学玻璃片,谱线波长在紫外区(370 nm以下)选用石英玻璃片。现在的灯窗口均选用石英玻璃片。灯中心装有内径为几毫米的圆筒状空心阴极和一环状阳极。圆筒用溅射率低并且发射谱线简单的材料如铝等金属制成。圆筒底部用钨镍合金支撑。圆筒内壁,有的直接用某种元素金属制成,但对于低熔点金属、活性较强的金属、价值较贵的金,4/21/2019,原子吸收光谱分析,29,属或难加工的金属,则采用它们的化合物或合金制成。阳极一般用金属钨支撑,上部用钛丝或钽片制成。钛丝或钽片具有吸气的性质,可以吸收灯内杂质气体。减少干扰谱线。灯内充有几毫米汞柱的氖气或

16、氩气。 空心阴极灯的发光是辉光放电发光。当灯的两极加上电压,会在两极间产生电场,同时阴极上的电子向阳极移动并被电场加速,电子与稀有气体碰撞产生二次电子和稀有气体离子,同时产生辉光现象。这些电子迅速移向阳极,而稀有气体离子迅速移向阴极,轰击阴极表面,使所需元素溅射出来,在阴极圆筒内形成原子蒸气,这些,4/21/2019,原子吸收光谱分析,30,蒸气状原子再次受到电子和离子的碰撞而被激发,于是在辉光中出现了所需元素的谱线。将阴极制成圆筒状,是为了削弱正辉光区,增强负辉光区,提高所需元素的谱线强度,还能延长灯的寿命。,4/21/2019,原子吸收光谱分析,31,由上述讨论可以看出空心阴极灯的两个特点,其一、空心阴极灯是有寿命的。随着灯的使用,其阴极表面的物理性质和所需元素的浓度会发生改变,灯的发光强度,稳定性等会逐渐变差,当这些指标达不到要求时就该换新的了。其二,我们若测定某个元素的含量,必须使用与其相应的空心阴极灯,如测定铜,就必须采用铜灯,因为只有铜灯才

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号