非编码rna的种类结构和功能

上传人:小** 文档编号:86374558 上传时间:2019-03-19 格式:DOC 页数:2 大小:18.50KB
返回 下载 相关 举报
非编码rna的种类结构和功能_第1页
第1页 / 共2页
非编码rna的种类结构和功能_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

《非编码rna的种类结构和功能》由会员分享,可在线阅读,更多相关《非编码rna的种类结构和功能(2页珍藏版)》请在金锄头文库上搜索。

1、非编码RNA的种类结构和功能1转运RNA(transferRNA,tRNA) 转运RNA(transferRNA,tRNA),结构特征之一是含有较多的修饰成分,核酸中大部分修饰成分是在tRNA中发现的。修饰成分在tRNA分子中的分布是有规律的,但其功能不清楚。5末端具有G(大部分)或C。3末端都以ACC的顺序终结。 有一个富有鸟嘌呤的环。有一个反密码子环,在这一环的顶端有三个暴露的碱基,称为反密码子(anticodon).反密码子可以与mRNA链上互补的密码子配对。有一个胸腺嘧啶环。tRNA具有三叶草型二级结构以及“L”型三级结构,tRNA的不同种类及数量可对蛋白质合成效率进行调节。 tRNA

2、负责特异性读取mRNA中包含的遗传信息,并将信息转化成相应氨基酸后连接到多肽链中。tRNA为每个密码子翻译成氨基酸提供了结合体,同时还准确地将所需氨基酸运送到核糖体上。鉴于tRNA在蛋白质合成中的关键作用,又把tRNA称作第二遗传密码。tRNA还具有其他一些特异功能,例如,在没有核糖体或其他核酸分子参与下,携带氨基酸转移至专一的受体分子,以合成细胞膜或细胞壁组分;作为反转录酶引物参与DNA合成;作为某些酶的抑制剂等。有的氨酰-tRNA还能调节氨基酸的生物合成。2核糖体RNA(ribosomal RNA, rRNA) 核糖体RNA是细胞中最为丰富的RNA,在活跃分裂的细菌细胞中占80%以上。他们

3、是核糖体的组分,并直接参与核糖体中蛋白质的合成。核糖体是rRNA提供了一个核糖体内部的“脚手架”,蛋白质可附着在上面。这种解释很直接很形象,但是低估了rRNA在蛋白质合成中的主动作用。较后续的研究表明,rRNA并非仅仅起到物理支架作用,多种多样的rRNA可起到识别、选择tRNA以及催化肽键形成等多种主动作用。例如:核糖体的功能就是,按照mRNA的指令将氨基酸合成多肽链。而这主要依靠核糖体识别tRNA 并催化肽键形成而实现。可以说核糖体是一个大的核酶( ribozyme)。而核糖体的催化功能主要是由rRNA来完成的,蛋白质并没有直接参与。3tmRNA tmRNA主要包括12个螺旋结构和4个“假结

4、”结构,同时还包括一个可译框架序列的单链RNA结构。tmRNA中H1由5端和3端两个末端形成,与tRNA的氨基酸受体臂相似。H1和H2的5部分之间有一个由10-13nt形成的环,类似tRNA中的二氢尿嘧啶环,称为“D”环。H3和H4,H6和H7,H8和H9,H10和H11之间分别形成Pk1,pK2,pK3,pK4。H4和H5之间则由一段包含编码标记肽ORF的单链RNA连接。H12由5个碱基对和7nt形成的环组成,类似tRNA中的TC臂和TC环,称为“T”环。 tmRNA结构按照功能进行划分可分为tRNA类似域(TLD)和mRNA类似域(MLD),TLD主要包括H1,H2,H12,“D”环和“T

5、”环,MDL则包括ORF和H5,这两部分分别具有类似tRNA和mRNA的功能。tmRNA是一类普遍存在于各种细菌及细胞器(如叶绿体,线粒体)中的稳定小分子RNA。它具有mRNA分子和tRNA分子的双重功能,它在一种特殊的翻译模式反式翻译模式中发挥重要作用。同时,它与基因的表达调控以及细胞周期的调控等生命过程密切相关,是细菌体内蛋白质合成中起“质量控制”的重要分子之一。识别翻译或读码有误的核糖体,也识别那些延迟停转的核糖体,介导这些有问题的核糖体的崩解。4核仁小RNA(snoRNA) 绝大多数snoRNA可归为两类boxC/D snoRNA和box H/ACA snoRNA,均具有保守的特征二级

6、结构,boxC/D snoRNA类能形成“发夹-铰链-发夹-尾部”状二级结构。boxC/D snoRNA其分子两端的box C,boxD以及末端配对序列能形成保守的“茎-内环-茎”状二级结构,称为“K-turn”结构。大多数boxC/D snoRNA和box H/ACA snoRNA分别具有指导rRNA,snRNA或tRNA前体中特定核苷2-O-核糖甲基化修饰与假尿嘧啶化修饰的功能;少部分snoRNA参与rRNA前体的加工剪切,与rRNA的正确折叠和组装相关。 5微RNA(microRNAs;miRNA,小分子RNA) 它是一类长度为2125 nt 的单链RNA分子片段,有一个很有趣的共同特点

7、,就是它的序列存在于茎环结构中的茎上。这种茎环结构通常是由70多个核苷酸组成的不完全的发夹结构,上面有一些凸起和环状结构。茎部形成双链RNA,但不是严格互补,可存在错配和GU摆动配对。据其作用模式的不同可以分为三类:第一类如lin4,与mRNA不完全互补,当miRNA与靶mRNA不完全配对结合时,主要影响其翻译过程而对mRNA的稳定性无影响。第二类如miR39 和 miR171,与其靶mRNA完全互补,当其与mRNA完全配对结合后,分裂切割靶mRNA。第三类作用模式如let7,当其与靶RNA完全互补配对时,直接靶向切割mRNA,而不完全互补配对时起调节基因表达的作用。6小干扰RNA(Small

8、interferingRNA;siRNA) siRNA是长度20到25个核苷酸的双股RNA,在生物学上有许多不同的用途。目前已知siRNA主要参与RNA干扰(RNAi)现象,以带有专一性的方式调节基因的表达。此外,也参与一些与RNAi相关的反应途径,例如抗病毒机制或是染色质结构的改变。其生理意义在于,生物的抗御机制,调控细胞分化与胚胎发育,维持基因组的稳定以及RNA 水平上的调控机制。7snRNA(小核RNA):它是真核生物转录后加工过程中RNA剪接体(spilceosome)的主要成分,参与mRNA前体的加工过程。另外,还有端体酶RNA(telomerase RNA),它与染色体末端的复制有

9、关;以及反义RNA(antisense RNA),它参与基因表达的调控。还参与RNA剪接和RNA修饰。8eRNA eRNA从内含子或DNA非编码区转录的RNA分子,精细调控基因的转录和翻译效率。9SNP RNA 信号识别颗粒RNA,细胞质中与含信号肽mRNA识别,决定分泌的RNA功能分子,它是一种核糖核酸蛋白复合体。能够识别并结合刚从游离核糖体上合成出来的信号肽,暂时中止新生肽的合成,又能与其在内质网上的受体(即停靠蛋白质)结合而将新生肽转移入内质网腔,防止蛋白水解酶对其损害。10gRNA又称引导RNA 真核生物中参与RNA编辑的具有与mRNA互补序列的RNA,具有3寡聚U的尾巴,中间有一段与

10、被编辑mRNA精确互补的序列,5端是一个锚定序列,它同非编辑的mRNA序列互补。在编辑时,形成一个编辑体(editosome),以gRNAs内部的序列作为模板进行转录物的校正,同时产生编辑的mRNA。gRNA3端的oligo(U)尾可作为被添加的U的供体。11piRNA piRNA主要存在于哺乳动物的生殖细胞和干细胞中,通过与Piwi亚家族蛋白结合形成piRNA复合物(piRC)来调控基因沉默途径。对Piwi亚家族蛋白的遗传分析以及piRNA积累的时间特性研究发现,piRC在配子发生过程中起着十分重要的作用。还能维持生殖系和干细胞功能和调节翻译和mRNA的稳定性。12atRNA(反义RNA) 是指与mRNA互补的RNA分子,由于核糖体不能翻译双链的RNA,所以反义RNA与mRNA特异性的互补结合,即抑制了该mRNA的翻译。通过反义RNA控制mRNA的翻译是原核生物基因表达调控的一种方式,反义RNA也参与了和P22噬菌体的溶菌/溶源状态的控制。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 管理学资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号