中考数学分类(含答案)实验应用型问题

上传人:自*** 文档编号:78753987 上传时间:2019-02-15 格式:DOC 页数:24 大小:1.68MB
返回 下载 相关 举报
中考数学分类(含答案)实验应用型问题_第1页
第1页 / 共24页
中考数学分类(含答案)实验应用型问题_第2页
第2页 / 共24页
中考数学分类(含答案)实验应用型问题_第3页
第3页 / 共24页
中考数学分类(含答案)实验应用型问题_第4页
第4页 / 共24页
中考数学分类(含答案)实验应用型问题_第5页
第5页 / 共24页
点击查看更多>>
资源描述

《中考数学分类(含答案)实验应用型问题》由会员分享,可在线阅读,更多相关《中考数学分类(含答案)实验应用型问题(24页珍藏版)》请在金锄头文库上搜索。

1、 中考数学分类(含答案)实验应用一、选择题1(2010 浙江省温州)用若干根相同的火柴棒首尾顺次相接围成一个梯形(提供的火柴棒全部用完),下列根数的火柴棒不能围成梯形的是() A5 B6 C7 D8【答案】B 二、填空题1(2010浙江绍兴)做如下操作:在等腰三角形ABC中,AB= AC,AD平分BAC,交BC于点D.将ABD作关于直线AD的轴对称变换,所得的像与ACD重合.第15题图对于下列结论:在同一个三角形中,等角对等边;在同一个三角形中,等边对等角;等腰三角形的顶角平分线、底边上的中线和高互相重合.由上述操作可得出的是 (将正确结论的序号都填上).【答案】2(2010 福建晋江)将一块

2、正五边形纸片(图)做成一个底面仍为正五边形且高相等的无盖纸盒(侧面均垂直于底面,见图),需在每一个顶点处剪去一个四边形,例如图中的四边形,则的大小是_度.第16题图【答案】72三、解答题1(2010江苏南通)(本小题满分10分)小沈准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清如果用x、y表示这两个看不清的数字,那么小陈的手机号码为139x370y580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍(1)求x+y的值;(2)求小沈一次拨对小陈手机号码的概率【答案】(1)因为(n为正整数)双因为所以所以即所以,所以(2)因为,且所以有,这5种

3、情况,因此,一次拨对小陈手机号的概率为0.22(2010山东青岛)问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题今天我们把正多边形的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.O我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面如右图中,用正方形镶嵌平面,可以发现在一个顶点O周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着 个正六边形的内角问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案

4、?问题解决猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角根据题意,可得方程:,整理得:,我们可以找到惟一一组适合方程的正整数解为 结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌猜

5、想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由验证2:结论2: 上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案问题拓广请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程猜想3: . 验证3:结论3: .【答案】解:3个; 1分验证2:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角根据题意,可得方程: 整理得:, 可以找到两组适合方程的

6、正整数解为和3分结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌5分猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌?6分验证3:在镶嵌平面时,设围绕某一点有m个正三角形、n个正方形和c个正六边形的内角可以拼成一个周角. 根据题意,可得方程:,整理得:,可以找到惟一一组适合方程的正整数解为.8分结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正

7、六边形三种正多边形组合可以进行平面镶嵌. (说明:本题答案不惟一,符合要求即可.)10分3(2010山东威海)A1B1C1ABC(图) 如图,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片ABC,A1B1C1 AB(A1)CB1C1图 E1将ABC,A1B1C1如图摆放,使点A1与B重合,点B1在AC边的延长线上,连接CC1交BB1于点E求证:B1C1CB1BC A1C1CAB(B1)图 F2若将ABC,A1B1C1如图摆放,使点B1与B重合,点A1在AC边的延长线上,连接CC1交A1B于点F试判断A1C1C与A1BC是否相等,并说明理由 3写出问题2中与A1FC相似的三角形

8、 【答案】(1)证明:由题意,知ABCA1B1C1, AB= A1B1,BC1=AC,2=7,A=1 3=A=1 1分 BC1AC 四边形ABC1C是平行四边形 2分AB(A1)CB1C1图 E1432567 ABCC1 4=7=2 3分 5=6, B1C1CB1BC4分2A1C1C =A1BC 5分理由如下:由题意,知ABCA1B1C1, AB= A1B1,BC1=BC,1=8,A=2 A1C1CAB(B1)图 F36451278 3=A,4=7 6分 1FBC=8FBC, C1BCA1BA 7分 4=(180C1BC),A=(180A1BA) 4=A 8分 4=2 5=6, A1C1C=A

9、1BC9分3C1FB,10分; A1C1B,ACB11分写对一个不得分4(2010山东威海)(1)探究新知:如图,已知ADBC,ADBC,点M,N是直线CD上任意两点ABDCMN图 求证:ABM与ABN的面积相等 如图,已知ADBE,ADBE,ABCDEF,点M是直线CD上任一点,点G是直线EF上任一点试判断ABM与ABG的面积是否相等,并说明理由 C图 ABDMFEG(2)结论应用: 如图,抛物线的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D试探究在抛物线上是否存在除点C以外的点E,使得ADE与ACD的面积相等? 若存在,请求出此时点E的坐标,若不存在,请说明理由 友情提示:解答

10、本问题过程中,可以直接使用“探究新知”中的结论 A图 CDBOxyA备用图CDBOxy【答案】1证明:分别过点M,N作 MEAB,NFAB,垂足分别为点E,F ABDCMN图 EF ADBC,ADBC, 四边形ABCD为平行四边形 ABCD ME= NF SABM,SABN, SABM SABN 1分相等理由如下:分别过点D,E作DHAB,EKAB,垂足分别为H,KHC图 ABDMFEGK则DHA=EKB=90 ADBE, DAH=EBK ADBE, DAHEBK DH=EK 2分 CDABEF, SABM,SABG, SABM SABG. 3分2答:存在 4分解:因为抛物线的顶点坐标是C(1,4),所以,可设抛物线的表达式为.又因为抛物线经过点A(3,0),将其坐标代入上式,得,解得. 该抛物线的表达式为,即 5分 D点坐标为(0,3)设直线AD的表达式为,代入点A的坐标,得,解得. 直线AD的表达式为 过C点作CGx轴,垂足为G,交AD于点H则H点的纵坐标为 CHCGHG422 6分设点E的横坐标为m,则点E的纵坐标为 过E点作EFx轴,垂足为F,交AD于点P,则点P的纵坐标为,EFCGA图 -1CDBOxyHPGFPE

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 职业教育

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号