奇妙的裴波那契数列和黄金分割

上传人:宝路 文档编号:7808036 上传时间:2017-09-23 格式:DOC 页数:17 大小:72.29KB
返回 下载 相关 举报
奇妙的裴波那契数列和黄金分割_第1页
第1页 / 共17页
奇妙的裴波那契数列和黄金分割_第2页
第2页 / 共17页
奇妙的裴波那契数列和黄金分割_第3页
第3页 / 共17页
奇妙的裴波那契数列和黄金分割_第4页
第4页 / 共17页
奇妙的裴波那契数列和黄金分割_第5页
第5页 / 共17页
点击查看更多>>
资源描述

《奇妙的裴波那契数列和黄金分割》由会员分享,可在线阅读,更多相关《奇妙的裴波那契数列和黄金分割(17页珍藏版)》请在金锄头文库上搜索。

1、奇妙的裴波那契数列和黄金分割“斐波那契数列”的发明者,是意大利数学家列昂纳多 斐波那契(Leonardo Fibonacci,生于公元 1170年,卒于 1240年。籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。1202 年,他撰写了珠算原理(Liber Abaci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。斐波那契数列指的是这样一个数列:0,1,1,2,3,5,8,13,21这个数列从第三项开始,每

2、一项都等于前两项之和。它的通项公式为:(1/ 5)*(1+ 5)/2n - (1- 5)/2n(又叫“比内公式”,是用无理数表示有理数的一个范例。)【 5 表示根号 5】很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。【该数列有很多奇妙的属性】比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割 0.6180339887还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积少(请自己验证后自己确定)1,每个偶数项的平方都比前后两项之积多(请自己验证后自己确定)1。如果你看到有这样一个题目:某人把一个 8*8的方格切成四块,拼成一个 5*13的长方形,故作惊讶

3、地问你:为什么 6465?其实就是利用了斐波那契数列的这个性质:5、8、13 正是数列中相邻的三项,事实上前后两块的面积确实差 1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。如果任意挑两个数为起始,比如 5、-2.4,然后两项两项地相加下去,形成 5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6 等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值。如果所有的数都要求是自然数,能找出被任意正整数整除的项的此类数列,必然是斐波那契数列的某项开始每一项的倍数,如 4,6,10,16,26 (从 2开始每个数

4、的两倍)。斐波那契数列的第 n项同时也代表了集合1,2,.,n中所有不包含相邻正整数的子集个数。斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2 )的其他性质:1.f(0)+f(1)+f(2)+ +f(n)=f(n+2)-12.f(1)+f(3)+f(5)+ +f(2n-1)=f(2n)-13.f(0)+f(2)+f(4)+ +f(2n)=f(2n+1)-14.f(0)2+f(1)2+ +f(n)2=f(n) f(n+1)5.f(0)-f(1)+f(2)- +(-1)n f(n)=(-1)n f(n+1)-f(n)+16.f(m+n)=f(m-1) f(n-1)+

5、f(m) f(n)7.f(n)2=(-1)(n-1)+f(n-1) f(n+1)8.f(2n-1)=f(n)2-f(n-2)2(1)细察下列各种花,它们的花瓣的数目具有斐波那契数:延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花。(2)细察以下花的类似花瓣部分,它们也具有斐波那契数:紫宛、大波斯菊、雏菊。斐波那契数经常与花瓣的数目相结合:3 百合和蝴蝶花5 蓝花耧斗菜、金凤花、飞燕草8 翠雀花13 金盏草21 紫宛34,55,84 雏菊(3)斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数 0,然后依序点数叶子(假定没有折损),直到到

6、达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。(4)斐波那契数列与黄金比值相继的斐波那契数的比的数列:它们交错地或大于或小于黄金比的值。该数列的极限为。这种联系暗示了无论(尤其在自然现象中)在哪里出现黄金比、黄金矩形或等角螺线,那里也就会出现斐波那契数,反之亦然。【与之相关的数学问题】1.排列组合.有一段楼梯有 10级台阶,规定每一步只能跨一级或两级,要登上第 10级台阶有几种不同的走

7、法?这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法1,2,3,5,8,13 所以,登上十级,有 89种2.数列中相邻两项的前项比后项的极限.就是问,当 n趋于无穷大时,F(n)/F(n+1)的极限是多少?这个可由它的通项公式直接得到,极限是(-1+ 5)/2,这个就是所谓的黄金分割点,也是代表大自然的和谐的一个数字。3.求递推数列 a(1)=1,a(n+1)=1+1/a(n).的通项公式.由数学归纳法可以得到:a(n)=F(n+1)/F(n).将菲波那契数列的通项式代入,化简就得结果。【斐波那契数列别名】斐波那契数

8、列又因数学家列昂纳多 斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。斐波那契数列一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?我们不妨拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对;两个月后,生下一对小兔民数共有两对;三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;依次类推可以列出下表:经过月数:-0-1-2-3-4-5-6-7-8-9-10-11-12兔子对数:-1-1-2-3-5-8-13-21-34-55-89-144-233表中数字 1,1,2,3,

9、5,8构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。这个特点的证明:每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,相加。这个数列是意大利中世纪数学家斐波那契在算盘全书中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/ (1 5/2) n-(1- 5/2) n(n=1,2,3.)【数列值的另一种求法】F(n) = ( sqrt ( 5 ) + 1 ) / 2) n 其中 x 表示取距离 x 最近的整数。斐波那契数列的应用】一位魔术师拿着一块边长为 8英尺的正方形地

10、毯,对他的地毯匠朋友说:“请您把这块地毯分成四小块,再把它们缝成一块长 13英尺,宽 5英尺的长方形地毯。”这位匠师对魔术师算术之差深感惊异,因为商者之间面积相差达一平方英尺呢!可是魔术师竟让匠师用图 2和图 3的办法达到了他的目的!这真是不可思议的事!亲爱的读者,你猜得到那神奇的一 平方英尺究竟跑到哪儿去呢?斐波那契数列在自然科学的其他分支,也有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休

11、息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。另外,观察延龄草,野玫瑰,南美血根草,大波斯菊,金凤花,耧斗菜,百合花,蝴蝶花的花瓣.可以发现它们花瓣数目具有斐波那契数:3,5,8,13,21斐波那契螺旋具有 13条顺时针旋转和 21条逆时针旋转的螺旋的蓟的头部具有 13条逆时针旋转和 21条逆时针旋转的螺旋的蓟的头部这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样。这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉。叶子的生长方式

12、也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用空间(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是 222.5度,这个角度称为“黄金角度”,因为它和整个圆周 360度之比是黄金分割数 1.618033989 的倒数,而这种生长方式就决定了斐波那契螺旋的产生。向日葵的种子排列形成的斐波那契螺旋有时能达到 89,甚至 144条。介绍把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是5(1/2)-1/2,取其前三位数字的近似值是 0.618。由于按此比例设计的造型十分美丽

13、,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以 0.618来近似,通过简单的计算就可以发现:1/0.618=1.618(1-0.618)/0.618=0.618这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144 .这个数列的名字叫做“斐波那契数列”,这些数被称为“斐波那契数”。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。斐波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是

14、随序号的增加而逐渐趋于黄金分割比的。即 f(n)/f(n-1)- 0.618 。由于斐波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的斐波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。不仅这个由 1,1,2,3,5.开始的“斐波那契数”是这样,随便选两个整数,然后按照斐波那契数的规律排下去,两数间比也是会逐渐逼近黄金比的。一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边

15、形对角线连满后出现的所有三角形,都是黄金分割三角形。黄金分割三角形还有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用 5个而不是 4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。由于五角星的顶角是 36度,这样也可以得出黄金分割的数值为 2Sin18 。黄金分割点约等于 0618:1是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。利用线段上的两黄金分割点,可作出正五角星,正五边形。2000 多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,

16、指的是把长为 L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列 1,1,2,3,5,8,13,21,.后二数之比2/3,3/5,5/8,8/13,13/21,.近似值的。黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。其实有关“黄金分割”,我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号