第五章 晶体中电子能带理论

上传人:豆浆 文档编号:771954 上传时间:2017-05-14 格式:DOC 页数:45 大小:964KB
返回 下载 相关 举报
第五章 晶体中电子能带理论_第1页
第1页 / 共45页
第五章 晶体中电子能带理论_第2页
第2页 / 共45页
第五章 晶体中电子能带理论_第3页
第3页 / 共45页
第五章 晶体中电子能带理论_第4页
第4页 / 共45页
第五章 晶体中电子能带理论_第5页
第5页 / 共45页
点击查看更多>>
资源描述

《第五章 晶体中电子能带理论》由会员分享,可在线阅读,更多相关《第五章 晶体中电子能带理论(45页珍藏版)》请在金锄头文库上搜索。

1、第五章 固体电子论基础在前面几章中,我们介绍了晶体的结构、晶体的结合、晶格振动及热学性质以及晶体中缺陷与扩散,其内容涉及固体中原子(或离子)的状态及运动规律,属于固体的原子理论。但要全面深入地认识固体,还必须研究固体中电子的状态及运动规律,建立与发展固体的电子理论。固体电子理论的发展是从金属电子理论开始的。金属具有良好的导热和导电能力,很早就为人们所应用 的研究。大约 1900 年左右,特鲁德首先提出:金属中的价电子可以在金属体内自由运动,如同理想气体中的粒子,电 子与电子、电子与离子之间的相互作用都可以忽略不计。后来洛仑兹又假设:平衡时电子速度服从麦克斯韦玻耳曼兹分布律。这就是经典的自由电子

2、气模型。自由电子的经典理论遇到根据性的困难金属中电子比热容等问题。 量子力学创立以后,大约在 1928 年,索末菲提出金属自由电子论的量子理论,认为金属内的势场是恒定的,金属中的价电子在这个平均势场中彼此独立运动,如同理想气体中的粒子一样是“自由”的;每个电子的运动由薛定谔方程描述,电子满足泡利不相容原理,故电子不服从经典的统计分布而是服从费米狄拉克统计律。这就是现代的金属电子理论通常称为金属的自由电子模型。这个理论得到电子气对晶体热容的贡献是很小的,解决了经典理论的困难。但晶体为什么会分为导体、绝缘体和半导体呢?上世纪 30 年代初布洛赫和布里渊等人研究了周期场中运动的电子性质,为固体电子的

3、能带理论奠定了基础。 能带论是以单电子在周期性场中运动的特征来表述晶体中电子的特征,是一个近似理论,但对固体中电子的状态 作出了较为正确的物理描述,因此,能带论是固体电子论中极其重要的部分。 本章首先讲述了金属的自由电子模型;然后介绍单电子在周期场中的运动;并用两种近似方法近自由电子近似和紧束缚近似,讨论周期场中单电子的本征值和本征态,得出能带论的基本结果;在讲述晶体中电子的准经典运动后,介绍了金属、绝缘体和半导体的能带模型等。 本章重点 自由电子模型;费米能;布洛赫定理;近自由电子近似;紧束缚近似;能带与能级;禁带;能态密度;晶体中电子的准经典运动及有效质量;导体、绝缘体和半导体晶体电子填充

4、能带的模型。第一节 金属自由电子论 本节简要介绍索末菲的量子自由电子论,并计算电子气的比热容 5.1.1 电子的能量状态 根据量子自由电子模型,认为金属价电子在金属内的恒定势场中运动,其薛定谔方程为: (5-1-1) 式中是 (r )电子的波函数, E 是电子总能量, m 是电子的有效质量, V(r) 是电子的势能,在这里是一个常数,可取作零,则上式可写为: ( 5-1-2) 方程的解可写为: ( 5-1-3) 其中 A 是归一化常数,由波函数的归一化性质可求: ( 5-1-4) 上式的积分区域 V 是晶体的体积。以( 5-1-3 )代入( 5-1-4 ),并假设晶体是每边长为 L 的立方体,

5、则可得到: ( 5-1-5) 即金属中自由电子的波函数和能量为: ( 5-1-6) ( 5-1-7) 从上式中可以看出 ( r )也是电子动量有本征函数,自由电子动量的本征值是 k 。波矢的取值是由边界条件确定的。为方便,采用周期性边界条件,可以写出: (x , y , z) = (x+L , y , z ) = (x , y+L , z) = (x , y , z+L) ( 5-1-8) 以( 5-1-6 )代入( 5-1-8 ),得: 可见: 所以有: ( 5-1-9) 其中 nx , ny , nz =0, 1, 2, 3, 将( 5-1-9 )代入( 5-1-7 )可得: ( 5-1-

6、10) 式( 5-1-10 )即为自由电子的能量表达式,每一组量子数( )确定电子的一个波矢 k ,从而确定了电子的一个状态 。处于这个态中的电子具有确定的动量 k 及确定的能量 ,因而具有确定的速度 。假如以 为坐标轴建立起波矢空间( k 空间),则每一个电子的本征态可以用该空间的一个点来代表,点的坐标由( 5-1-9 )来确定。图 5-1-1 画出这些状态代表点在 k 空间中分布的示意图。图中示出,沿 及 轴的两个相邻代表点之间的距离是相同的,由( 5-1-9 )可知,这个距离就是 2/L 。可见,状态代表点在 k 空间中的分布是均匀的,每个点所占的 k 空间体积是 ,其中 V 是晶体的体

7、积。在 k 空间的单位体积中含有的状态代表点数应为 ,这就是 k 空间中状态点的密度。 图 5-1-1 状态代表点在 k 空间中的分布 5.1.2 自由电子的能态密度 从自由电子能量有表达式( 5-1-10 )中可以得到: ( 5-1-11) 这是 k 空间中半径为 的球面方程,对应于一定的电子能量 E ,就有一个半径确定的球面存在。这些同心的球面称作电子的等能面 。当电子能量值在 EE+dE 之间时, k 空间中相应的等能面半径则取 kk+dk 之间的值。在这样两个球面之间的壳层所包含的状态点,就是相应于能量为数 EE+dE 之间电子的所有本征态的数目,这个数目应等于状态点密度乘以球面壳层的

8、体积。显然,上述球面壳层的体积是 4k2dk 。所以其中所包含的状态数目 dZ 是: ( 5-1-12) 根据式( 5-1-7 )有: ( 5-1-13) 所以有: ( 5-1-14) 这里若定义 能态密度函数 为: ( 5-1-15) 根据( 5-1-14 )和( 5-1-15 )式,可以求得: ( 5-1-16) 若考虑到每个状态可容纳两个相反的电子,则能态密度函数可表示为: ( 5-1-17) 5.1.3 费米分布及基态费米能 电子系统服从费米统计分布律,即在热平衡时,电子占据能量为 E 的状态的几率由 ( 5-1-18) 给出。f(E) 就是费米统计分布函数。在这个函数中,仅包含一个参

9、量 ,它具有能量的量纲,称作费米能。实际上, E F是系统中电子的化学势。 将 f(E) 乘以能量在 E E + dE 之间的状态数 N ( E ) dE ,就得到能量在 E E + dE 之间的电子平均数 dN 。这样,系统中电子的总数 N 就可表示为: ( 5-1-19) 由于 f(E) 中包含费米能 ,故上式可用来确定系统的 。下面分 T=0K 和 T0K 两种情况来讨论。首先是第一种情况: T =0K 时。这时系统的费米能可用 来标记。在 时, f ( E ) 中的指数函数趋于零,即 所以, f(E)=1 。这表明所有能量低于 的态都填满了电子。 在 E 时, ,所以有 f(E)=0

10、。即所有能量高于 的状态都是空的。可见, 就是以绝对零度时,电子填充的最高能级(见图 5-1-2 ( b )。 在 T =0 K 时,( 5-1-19 )式就变成: ( 5-1-20) 以自由电子的能态密度( 5-1-17 )代入上式,即可得到: ( 5-1-21)从而得到: ( 5-1-22) 式中 n= N/V 是单体积中的电子数电子浓度,一般约为 , 约为几个到十几个电子伏。电子的平均动能由下式给出: ( 5-1-23)上式是利用了( 5-1-22 )式而得到的结果。上述结果表明,在绝对零度时,电子的平均动能与费米能 有 相同的数量级。因此,电子的平均动能也具有几个到几十个电子伏的数量级

11、。经典理论却得到电子的平均动能为零的结果。原因在于电子服从泡利原理,每个本征态只能由自旋相反的两个电子占据,因此,即使在绝对零度时,也不可能发生所有电子都集中在最低能态上的情况。 图 5-1-2 (a) f( E) E 的关系曲线 (b) 费米面和热激发 5.1.4 激发态 当 T 0K ,有 的情况,分析如下: 当 E 比 低几个 时, ,因此, f (E)1; 当 时,有 f(E)=1/2; 当 E 比 高几个 时, ,因此, f(E)0。 这里图 5-1-2 ( a )描绘了 f ( E ) E 的关系曲线。图中画出了 f ( E ) 从 T =0 K TK 时的变化,表明:T0K 时,

12、一部分能量低于 的电子获得大小为 数量级的热能而跃迁到能量高于 的状态激发态中去(见图 5-1-2 ( b )。 以( 5-1-17 )和( 5-1-18 )式代入( 5-1-19 )式,得到: ( 5-1-24) 令 , , 则( 5-1-24)式可写为: ( 5-1-25) 其中 ( 5-1-25) 这是费米积分,费米积分的一般形式为: 这类积分一般不可能用解析方法求解,通常采用级数展开法,对 在某些区间求得近似解。对于 1(即 )的情况, F ( )可用下式表示: ( 5-1-26) 当 时,上式变为:( 5-1-27) 显然当 n=1/2 时,有 当 1 时,级数收敛很快,可取前两项,

13、并以此代入( 5-1-25 )式中,得: 若以 EF0代替上式方括号中的 E F ,并利用式( 5-1-22 ),可得: ( 5-1-28) 由式( 5-1-28 )可知,费米能 E F 随温度升高而略有下降。由于 k BT a 。也就是说,如果波包大小比原胞的线度大得多,则晶体中电子的运动可以用波包运动的规律来描述,即波包中心的速度等于粒子处于波包中心那个状态所具有的平均速度。例如,在输运过程中,只有当自由程远远大于原胞线度的情况下,才可以把电子看作是一个准经典运动的粒子。 图 5-5-2( a ) 和 ( b ) 分别给出 E ( k ) , v ( k ) 在简约布里渊区内作为 k 的函数曲线。可见,在能带底的能带顶处,即 E ( k ) 的极值点处,电子速度为零,而在 处电子速度的数值最大。这种情况与自由粒子速度随能量 E 单调增大是显然不同的。将上述结果推广到三维情况为: ( 5-5-11) 图 5-5-2 (a)E(k)k 关系图,(b)V(k)k 关系图,(c)m+( k)k 关系图5.5.3 外力作用下电子状态的变化 晶体中的电子在外力作用下其状态是怎样变化的?当将电子看作准经典粒子时,这个问

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号