磁特性与磁性材料

上传人:豆浆 文档编号:771130 上传时间:2017-05-14 格式:DOC 页数:12 大小:96KB
返回 下载 相关 举报
磁特性与磁性材料_第1页
第1页 / 共12页
磁特性与磁性材料_第2页
第2页 / 共12页
磁特性与磁性材料_第3页
第3页 / 共12页
磁特性与磁性材料_第4页
第4页 / 共12页
磁特性与磁性材料_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《磁特性与磁性材料》由会员分享,可在线阅读,更多相关《磁特性与磁性材料(12页珍藏版)》请在金锄头文库上搜索。

1、第 2 章固體材料的電性 P2-1第 8 章 磁特性與磁性材料8.1 磁性理論8.2 磁性材料分類8.3 磁特性8.4 軟磁材料8.5 硬磁材料8.6 鐵氧磁體8.7 特殊磁性材料是重要的電工材料之一,除了在傳統的電機應用上扮演重要角色外,在先進的電子資訊工程領域中,亦扮演重要角色。磁性材料P2-2 電子材料2.1 磁性理論材料的磁性理論,一般的基本電學與電磁學已有詳盡的介紹。以下我們簡單摘要磁性理論相關的物理量,材料內的磁學有關的物理量與單位依據電磁學的安培迴路定律可知,電流迴路會在週圍產生磁場,磁場強度H 與電流 i 的關係為 ,H 的單位為安培 /米( 奧斯特)。相對cidl 3104感

2、應的磁通密度為 B,即單位面積通過的磁通量。 B 的單位為韋伯/米 2(=104 高斯)。在真空中 B 與 H 的關係可寫成 。 0 為真空中的導磁係數(magnetic permeability)。 亨利/ 米。7014導磁係數在固體磁性材料內,既使沒有外加磁場,仍有磁的現象,這是因為材料內部有另一種磁的來源。電子在原子軌道上運動與本身自旋所產生的磁距(magnetic moment),也會對磁通量密度有貢獻,因此可視為另一種磁的來源。磁距的大小 。i 為電子環狀運行產生的等效電流, A 為軌道面積。在巨觀Am尺度上,我們定義材料內單位體積的磁矩 M,稱為磁化強度(magnetization

3、)。M 與外加磁場 H 的關係可寫成 ,其中 m為磁化係數(magnetic Hmsusceptibility)。在加入磁化強度 M 後,B 與 H 的關係改寫成Br001m其中相對導磁係數 ,導磁係數 磁化係數mr mr100m。由上述公式的推導可知,材料的磁通量密度 B 性和與導磁係數 有密切的關係。磁性材料是依其磁特性來做分類。依照簡化的原子模型,電子以一特殊的圓形軌道繞著原子核做圓周運動,電子本身並做自旋運動。此外,原子核本身亦做自旋運動。由於電荷運動會產生電流,電子的這些軌道與自旋運動相當是原子尺度的電流迴路。一電流迴路會產生一個類似電偶極的磁偶極。因此每個原子的磁偶極矩可視為電子軌

4、道運動,電子自旋,原子核自旋所產生磁偶極的總和。由於原子核的質量較重,所以原子核自旋的速度遠小於電子自旋的速度。因此原子核自旋對應的電流遠小於電子自旋的等效電流貢獻,所以原子核自旋所造成的磁偶極相對其它兩個效應相比,可以忽略。見圖 2.32(a)與(b)。磁偶極的強度可用磁偶極矩 m 來表示,如圖 2.32 磁 偶 極 圖 示 (a)沿 軸 方 向 看 (b)由 側 面 看第 2 章固體材料的電性 P2-3(2.102)HB與 定義為r(2.103)rm1和(2.104)0r為磁性材料的相對導磁係數(relative permeability), 為 導磁係數。導磁r 係數已經包含材料的磁化效

5、應。因此 H 在真空與磁性介質的兩種情形皆相同。B 則不同,必須使用 取代。然而,一般情形並非如此簡單,因為磁性物質改變原始場的分佈。在範例02.11 的情形,原始場不會受到磁性材料的改變。同樣地,在非磁均勻磁化率的情形中,相當磁性物質內有一等效的磁體積電流,加上邊界上的表面電流。然而,這都只要計算導磁係數即可。對非等向性磁性材料,H 與 B 不平行,且兩者的關係可用矩陣表示(2.107)BHxyzxyxzzzzy這種情況正如同非等向性介電材料的 D 與 E 關係。磁的單位磁物理量 SI 制 cgs 制磁通密度 B= 高斯 (Gauss)磁場強度 H= 奧斯特(Oe)磁化強度 MP2-4 電子

6、材料2.2 磁性材料分類反磁性反磁性(diamagnetism) :許多材料內一個原子的淨磁偶極矩為零,即各種的電子軌道和自旋運動所造成的磁偶極矩的平均總和為零。這些材料在外加磁場時,會感應一反向的淨磁偶極矩,這種磁化稱為反磁性(diamagnetism)。反磁性一般都非常微弱,磁化係數 的數量級僅約 10-5。只有其它型式的磁性都顯現不出來時,才會被觀察出來,在電工材料的用途並不大。事實上所有的材料都具有此一特性,例如常見的導電金屬如銅(Cu) ,銀 (Ag),金(Au)等材料,皆顯現反磁性。順磁性順磁性(paramagnetism) 些材料既使在無外加磁場下,每個原子具有不為零的淨磁矩。雖

7、然每個原子的磁矩不為零,然而方向為散亂分佈,致使巨觀的淨磁矩為零。當有外加磁場時,每個各別的磁偶極矩受到一力矩作用,而使其朝磁場方向轉動,如圖 2.33 所示。這種磁化現象稱為 順磁性(paramagnetism) 。順磁性的磁化係數數量級約在 10-310-5。常見顯現順磁性的導電金屬如銅(Cu),銀(Ag) ,金 (Au)等材料。一般順磁性的用途不大,絕熱去磁,超低溫冷凍技術,可將溫度降低到1K 以下。原理是:一定溫度下,順磁性材料內的磁距排列,因外加磁場作用變得更有序,可降低系統熵(亂度),當移走磁場,因系統絕熱,不增加熵(不破壞磁距排列亂度),. 。此外,其它還有一類磁性材料,例如鐵磁

8、性(ferromagnetic),反鐵磁性(antiferromagnetic),以及 鐵氧磁性(ferrimagnetic)等。這些材料既使在無磁場的情況下,也顯示永久磁化現象。鐵磁性鐵磁性(ferromagnetic) ,由於電子自旋動量大於軌道角動量,因此具有很強的磁偶極矩。鐵磁性的理論是以魏斯(Weiss)於 1907 年提出的 “磁田 (magnetic domain)”的觀念為基礎。磁田是材料中的一個小區域,由於內部相臨的磁偶極矩彼此產生其磁偶極矩均指向同一方向強交互作用場,致使磁偶極矩均指向同一方向。若無外加磁場,雖然每一個磁田都被磁化至飽和,但各個磁田的磁化方向是散亂分佈,如圖

9、 2.35(a)。因此巨觀的淨磁化為零。若外加一較弱的磁場,與磁場同方向的磁田體積會延伸擴大,而其它方向的磁田則會逐漸縮小,如圖2.35(b)。這就是磁田壁(domain wall)移動的現象。若將外加磁場移去,則磁田壁朝反方向移動,材料恢復為原有的未磁化狀態。若外加一強磁場,磁田壁繼續延伸,變成不可逆的狀態。也就是說即使移去外加磁場,材料也無法恢復為原第 2 章固體材料的電性 P2-5有的未磁化狀態。如果磁場繼續增強,磁化過程中除了磁田壁移動外,還會伴隨磁田旋轉現象的發生,即與外加磁場不同方向的磁田,磁化方向會旋轉到與磁場平行的方向,如圖 2.35(c) 所示,因此材料可以磁化至飽和狀態。此

10、時,即使移去外加磁場,材料仍會保有沿磁場方向的磁化。這時候如果想把材料恢復到先前未磁化的狀態,就必須再加一反向磁場,才能將淨磁化降到零。圖 2.35 鐵 磁 性 材 料 的 磁 化 步 驟 (a)未 磁 化 狀 態 (b)磁 田 壁 移 動 (c) 磁 田 轉 動鐵氧磁性P2-6 電子材料2.9 磁特性磁化過程磁化,磁偶極子磁滯曲線現在讓我們討論鐵磁材料 B 與 H 的關係。圖 2.36 為一典型的材 B 與 H 關係的曲線,此一曲線即為磁滯曲線,又稱 B-H 曲線。為了模擬磁滯效應的演變,首先我們從未磁化的鐵磁材料開始,這時候 B 與 H 皆為零,相當曲線上的 a點。當 H 增加,磁化建立,

11、 B 沿 ab 曲線漸增而到達飽和點 b。根據較早討論我們將磁化分為下列幾個步驟:(1) 磁田壁的可逆運動,(2) 磁田壁的不可逆運動,(3) 磁田旋轉。磁化過程對應遲滯曲線的各區域,我們分別標上 1,2,與 3,如圖 2.36 所示。如果 H 值減到零,B 值不會沿 ab 回來,而是沿著 bc 曲線回來,表示磁場完全移去後,材料仍會殘留磁化量。事實上,必須在反方向加一磁場,才能將 B 帶回零值,如曲線 cd 所示。在 c 點的 B 值稱為 剩磁(remanence),或頑磁力(retentivity) 。其中的 d 點的 H 值為抗磁力(coercivity)。若在反方向再增加 H 值,會使

12、 B 值在反方向達到飽和點,如曲線 de 部份。若再減少 H 值到零,則 B 會增加,相當於曲線 efgb,因此完成了磁滯曲線。圖 2.36 鐵 磁 材 料 的 磁 滯 曲 線磁滯曲線 矯頑力 飽和磁感應 殘餘磁感應 BH 最大乘積第 2 章固體材料的電性 P2-7磁晶異向性材料的結晶方向也會對鐵磁材料的磁化造成影響。例如圖 9.x(WFS-p842)顯示 BCC 結構的鐵(Fe),在 結晶方向是容易磁化方向,因此在極低的磁場下,很容易就可以達到飽和磁感應 B;在 結晶方向是困難磁化方向,必須在極高的磁場下才能達到磁感應 B。此外,FCC 結構的鎳(Ni)也具有磁晶異向性,但它的容易磁化方向在

13、 ;困難磁化方向在。在一般複晶材料中,材料內的晶粒具有各種結晶方向,磁化過程中,低磁場範圍首先磁化沿容易磁化方向的晶粒,在高磁場範圍則必須對困難磁化方向的晶粒作功,旋轉磁矩,所施的能量稱為磁結晶能量。利用磁晶異向性可提高材料的磁特性,例如稍後介紹的矽鋼片軟磁材料,在製程中,沿的容易磁化方向滾軋,產生高方向性組織的矽鋼片,它的初始導磁係數比散亂組織的矽鋼片要高很多。圖 9.x 鐵 磁 性 材 料 Fe 的 磁 晶 異 向 性磁伸縮鐵磁材料磁化時,因晶格變形會引起磁化方向有少許的長度變化,這種因磁化產生的彈性應變量 稱為磁伸縮 (magnetostriction),又稱磁歪,大小約l為 10-6

14、左右。因磁伸縮所儲存的機械能稱為 磁伸縮能。圖 9-x(WFS-p843)顯示鐵,鎳,鈷的磁伸縮變化,其中鐵在低磁場時為正值,其餘皆為負值。圖 9.x 鐵 磁 性 材 料 Fe, Ni, Co 的 磁 伸 縮 特 性磁伸縮的成因是,外加磁場使磁矩旋轉到與磁場方向一致時,原子間鍵結長度改變,磁矩相互吸引或排斥,造成磁化過程材料晶格的收縮或伸長。鐵磁的溫度效應溫度升高會P2-8 電子材料2.9 軟磁材料軟磁材料是指容易磁化與去磁的材料。因此材料的磁滯曲線必須很窄。主要有純鐵,低碳鋼,矽鋼片,高導磁合金。軟磁材料特性需求(1.) 磁滯損失小,在感應線圈中的軟磁材料(如變壓器內的線圈),時變電流會改變

15、線圈內的磁場 H。軟磁材料的磁感應 B 會隨磁滯曲線變化。 一個週期的時變電流變化,相當損失一個磁滯曲線迴路面積的能量。當頻率增加時,此一能量損失隨之增加。 因此,軟磁材料為避免磁滯損失,一般選用磁滯迴路面積較小的材料。此一特性需求,將與稍後介紹的硬磁材料相反 。(2.) 渦流損失小 交流電的使用下,變動磁場感應的渦電流 (eddy current),會造成焦耳熱的能量損失(即功率=電流 2電阻 )。一般軟磁材料的使用,應避免這項能量的損失。例如在低頻元件上,使用電阻值較高矽鋼取代一般碳鋼,就是在避免渦流損失。(3.) 具有高導磁率(4.) 具有高飽和磁率(5.) 特殊需求: 正方的磁滯曲線,

16、高初導磁率鋼鐵系(1.) 純鐵:純鐵( 肥粒鐵)具有高飽和磁化,是極佳的軟磁材料,但機械強度太差,製造需特別注意。此外,純鐵電阻係數低,故大多只用於直流電路或少量的教流繼電器,並不適用大部份的交流電路。可做繼電器,電壓調節器與量測儀器的鐵心,(2.) 低碳鋼:加入碳,雖然會降低純鐵的磁性,但可提高材料機械強度,因此碳鋼多用於強度需求較高的磁路上。含碳量在 2%以下稱為軟鋼。矽鋼應用最廣的軟磁材料是矽鋼片,它的成份是鋼鐵中添加 34%的矽。早先,低頻(60Hz) 電力裝置如變壓器,馬達與發電機的磁心,大部份都使用低碳鋼製成,但渦流能量損失非常高。矽鋼中添加的矽,可增加電阻率,降低渦流損。同時,矽也可以降低鋼鐵的磁晶異向性,增加導磁率,減少磁損失與變壓器噪音。第 2 章固體材料的電性 P2-9降低渦電流更先進的方法是,採用層狀結構的矽鋼片。將矽鋼片的兩面塗

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 其它相关文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号