《辽中区二中2018-2019学年上学期高二数学12月月考试题含解析》由会员分享,可在线阅读,更多相关《辽中区二中2018-2019学年上学期高二数学12月月考试题含解析(17页珍藏版)》请在金锄头文库上搜索。
1、精选高中模拟试卷辽中区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 等差数列an中,a1+a5=10,a4=7,则数列an的公差为( )A1B2C3D42 若满足约束条件,则当取最大值时,的值为( )A B C D3 若则的值为( ) A8 B C2 D 4 已知曲线C1:y=ex上一点A(x1,y1),曲线C2:y=1+ln(xm)(m0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|e恒成立,则m的最小值为( )A1BCe1De+15 底面为矩形的四棱锥PABCD的顶点都在球O的表面上,且O在底面ABCD内,PO平
2、面ABCD,当四棱锥PABCD的体积的最大值为18时,球O的表面积为( )A36 B48C60 D726 设f(x)=asin(x+)+bcos(x+)+4,其中a,b,均为非零的常数,f(1988)=3,则f(2008)的值为( )A1B3C5D不确定7 若复数z=(其中aR,i是虚数单位)的实部与虚部相等,则a=( )A3B6C9D128 如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆在扇形OAB内随机取一点,则此点取自阴影部分的概率是( )A1BCD9 下列计算正确的是( )A、 B、 C、 D、10与圆C1:x2+y26x+4y+12=0,C2:x2+y214x2
3、y+14=0都相切的直线有()A1条B2条C3条D4条11一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A3BC2D612设抛物线C:y2=2px(p0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )Ay2=4x或y2=8xBy2=2x或y2=8xCy2=4x或y2=16xDy2=2x或y2=16x二、填空题13某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .14命题“对任意的xR,x3x2+10”的否定是15当a0,a1时,函数
4、f(x)=loga(x1)+1的图象恒过定点A,若点A在直线mxy+n=0上,则4m+2n的最小值是16已知函数f(x)=(2x+1)ex,f(x)为f(x)的导函数,则f(0)的值为17设,在区间上任取一个实数,曲线在点处的切线斜率为,则随机事件“”的概率为_.18【2017-2018第一学期东台安丰中学高三第一次月考】若函数在其定义域上恰有两个零点,则正实数的值为_三、解答题19已知函数f(x)=2cos2x+2sinxcosx1,且f(x)的周期为2()当时,求f(x)的最值;()若,求的值20已知等差数列满足:=2,且,成等比数列。(1) 求数列的通项公式。(2)记为数列的前n项和,是
5、否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.21若函数f(x)=ax(a0,且a1)在1,2上的最大值比最小值大,求a的值22如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2b截得的线段长等于椭圆C1的短轴长C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,()求C1、C2的方程;()记MAB,MDE的面积分别为S1、S2,若,求直线AB的方程23(本题满分14分)已知函数.(1)若在上是单调递减函数,求实数的取值范围;(2)记,并设是函数的两个极值点,若,求的最小值.24从某居民区随机抽取10个家庭,获得第i个家庭的
6、月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,计算得xi=80, yi=20, xiyi=184, xi2=720(1)求家庭的月储蓄对月收入的回归方程;(2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄辽中区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:设数列an的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B2 【答案】D【解析】考点:简单线性规划3 【答案】B【解析】试题分析:,故选B。考点:分段函数。4
7、 【答案】C【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|e恒成立,可得: =1+ln(x2m),x2x1e,01+ln(x2m),lnxx1(x1),考虑x2m1时1+ln(x2m)x2m,令x2m,化为mxexe,xm+令f(x)=xexe,则f(x)=1exe,可得x=e时,f(x)取得最大值me1故选:C5 【答案】【解析】选A.设球O的半径为R,矩形ABCD的长,宽分别为a,b,则有a2b24R22ab,ab2R2,又V四棱锥PABCDS矩形ABCDPOabRR3.R318,则R3,球O的表面积为S4R236,选A.6 【答案】B【解析】解:f(1988)=asin(1
8、988+)+bcos(1998+)+4=asin+bcos+4=3,asin+bcos=1,故f(2008)=asin(2008+)+bcos(2008+)+4=asin+bcos+4=1+4=3,故选:B【点评】本题主要考查利用诱导公式进行化简求值,属于中档题7 【答案】A【解析】解:复数z=由条件复数z=(其中aR,i是虚数单位)的实部与虚部相等,得,18a=3a+6,解得a=3故选:A【点评】本题考查复数的代数形式的混合运算,考查计算能力8 【答案】A【解析】解:设扇形的半径为r,则扇形OAB的面积为,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线
9、部分,则阴影部分的面积为:,此点取自阴影部分的概率是故选A9 【答案】B【解析】试题分析:根据可知,B正确。考点:指数运算。10【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数【解答】解:圆C1:x2+y26x+4y+12=0,C2:x2+y214x2y+14=0的方程可化为,;圆C1,C2的圆心分别为(3,2),(7,1);半径为r1=1,r2=6两圆的圆心距=r2r1;两个圆外切,它们只有1条内公切线,2条外公切线故选C11【答案】C【解析】解:椭圆的半焦距为2,离心率e=,c=2,a=3,b=2b=2故选:C【点评】本题主要考查了椭圆
10、的简单性质属基础题12【答案】 C【解析】解:抛物线C方程为y2=2px(p0),焦点F坐标为(,0),可得|OF|=,以MF为直径的圆过点(0,2),设A(0,2),可得AFAM,RtAOF中,|AF|=,sinOAF=,根据抛物线的定义,得直线AO切以MF为直径的圆于A点,OAF=AMF,可得RtAMF中,sinAMF=,|MF|=5,|AF|=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x故选:C方法二:抛物线C方程为y2=2px(p0),焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5,因为圆心是MF的中点,所以根据中点坐
11、标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5,4),代入抛物线方程得p210p+16=0,所以p=2或p=8所以抛物线C的方程为y2=4x或y2=16x故答案C【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题二、填空题13【答案】12【解析】考点:分层抽样14【答案】存在xR,x3x2+10 【解析】解:因为全称命题的否定是特称命题,所以命题“对任意的xR,x3x2+10”的否定
12、是:存在xR,x3x2+10故答案为:存在xR,x3x2+10【点评】本题考查命题的否定,特称命题与全称命题的否定关系15【答案】2 【解析】解:整理函数解析式得f(x)1=loga(x1),故可知函数f(x)的图象恒过(2,1)即A(2,1),故2m+n=14m+2n2=2=2当且仅当4m=2n,即2m=n,即n=,m=时取等号4m+2n的最小值为2故答案为:216【答案】3 【解析】解:f(x)=(2x+1)ex,f(x)=2ex+(2x+1)ex,f(0)=2e0+(20+1)e0=2+1=3故答案为:317【答案】【解析】解析:本题考查几何概率的计算与切线斜率的计算,由得,随机事件“”的概率为18【答案】【解析】考查函数,其余条件均不变,则:当x0时,f(x)=x+2x,单调递增,f(1)=1+210,由零点存在定理,可得f(x)在(1,0)有且只有一个零点;则由题意可得x0时,f(x)=axlnx有且只有一个零点,即有有且只有一个实根。令,当xe时,g(x)0,g(x)递减;当0xe时