搜索引起的链接分析-计算网页的重要性

上传人:蜘*** 文档编号:70852627 上传时间:2019-01-18 格式:DOC 页数:20 大小:238.91KB
返回 下载 相关 举报
搜索引起的链接分析-计算网页的重要性_第1页
第1页 / 共20页
搜索引起的链接分析-计算网页的重要性_第2页
第2页 / 共20页
搜索引起的链接分析-计算网页的重要性_第3页
第3页 / 共20页
搜索引起的链接分析-计算网页的重要性_第4页
第4页 / 共20页
搜索引起的链接分析-计算网页的重要性_第5页
第5页 / 共20页
点击查看更多>>
资源描述

《搜索引起的链接分析-计算网页的重要性》由会员分享,可在线阅读,更多相关《搜索引起的链接分析-计算网页的重要性(20页珍藏版)》请在金锄头文库上搜索。

1、1. PageRank算法概述 PageRank,即网页排名,又称网页级别、Google左侧排名或佩奇排名。 是Google创始人拉里佩奇和谢尔盖布林于1997年构建早期的搜索系统原型时提出的链接分析算法,自从Google在商业上获得空前的成功后,该算法也成为其他搜索引擎和学术界十分关注的计算模型。目前很多重要的链接分析算法都是在PageRank算法基础上衍生出来的。PageRank是Google用于用来标识网页的等级/重要性的一种方法,是Google用来衡量一个网站的好坏的唯一标准。在揉合了诸如Title标识和Keywords标识等所有其它因素之后,Google通过PageRank来调整结果

2、,使那些更具“等级/重要性”的网页在搜索结果中另网站排名获得提升,从而提高搜索结果的相关性和质量。其级别从0到10级,10级为满分。PR值越高说明该网页越受欢迎(越重要)。例如:一个PR值为1的网站表明这个网站不太具有流行度,而PR值为7到10则表明这个网站非常受欢迎(或者说极其重要)。一般PR值达到4,就算是一个不错的网站了。Google把自己的网站的PR值定到10,这说明Google这个网站是非常受欢迎的,也可以说这个网站非常重要。2. 从入链数量到 PageRank 在PageRank提出之前,已经有研究者提出利用网页的入链数量来进行链接分析计算,这种入链方法假设一个网页的入链越多,则该

3、网页越重要。早期的很多搜索引擎也采纳了入链数量作为链接分析方法,对于搜索引擎效果提升也有较明显的效果。 PageRank除了考虑到入链数量的影响,还参考了网页质量因素,两者相结合获得了更好的网页重要性评价标准。对于某个互联网网页A来说,该网页PageRank的计算基于以下两个基本假设:l 数量假设:在Web图模型中,如果一个页面节点接收到的其他网页指向的入链数量越多,那么这个页面越重要。l 质量假设:指向页面A的入链质量不同,质量高的页面会通过链接向其他页面传递更多的权重。所以越是质量高的页面指向页面A,则页面A越重要。 利用以上两个假设,PageRank算法刚开始赋予每个网页相同的重要性得分

4、,通过迭代递归计算来更新每个页面节点的PageRank得分,直到得分稳定为止。 PageRank计算得出的结果是网页的重要性评价,这和用户输入的查询是没有任何关系的,即算法是主题无关的。假设有一个搜索引擎,其相似度计算函数不考虑内容相似因素,完全采用PageRank来进行排序,那么这个搜索引擎的表现是什么样子的呢?这个搜索引擎对于任意不同的查询请求,返回的结果都是相同的,即返回PageRank值最高的页面。3. PageRank算法原理 PageRank的计算充分利用了两个假设:数量假设和质量假设。步骤如下: 1)在初始阶段:网页通过链接关系构建起Web图,每个页面设置相同的PageRank值

5、,通过若干轮的计算,会得到每个页面所获得的最终PageRank值。随着每一轮的计算进行,网页当前的PageRank值会不断得到更新。 2)在一轮中更新页面PageRank得分的计算方法:在一轮更新页面PageRank得分的计算中,每个页面将其当前的PageRank值平均分配到本页面包含的出链上,这样每个链接即获得了相应的权值。而每个页面将所有指向本页面的入链所传入的权值求和,即可得到新的PageRank得分。当每个页面都获得了更新后的PageRank值,就完成了一轮PageRank计算。3.2 基本思想: 如果网页T存在一个指向网页A的连接,则表明T的所有者认为A比较重要,从而把T的一部分重要

6、性得分赋予A。这个重要性得分值为:PR(T)/L(T) 其中PR(T)为T的PageRank值,L(T)为T的出链数 则A的PageRank值为一系列类似于T的页面重要性得分值的累加。 即一个页面的得票数由所有链向它的页面的重要性来决定,到一个页面的超链接相当于对该页投一票。一个页面的PageRank是由所有链向它的页面(链入页面)的重要性经过递归算法得到的。一个有较多链入的页面会有较高的等级,相反如果一个页面没有任何链入页面,那么它没有等级。3.3 PageRank简单计算: 假设一个由只有4个页面组成的集合:A,B,C和D。如果所有页面都链向A,那么A的PR(PageRank)值将是B,C

7、及D的和。 继续假设B也有链接到C,并且D也有链接到包括A的3个页面。一个页面不能投票2次。所以B给每个页面半票。以同样的逻辑,D投出的票只有三分之一算到了A的PageRank上。 换句话说,根据链出总数平分一个页面的PR值。 例子: 如图1 所示的例子来说明PageRank的具体计算过程。 3.4 修正PageRank计算公式: 由于存在一些出链为0,也就是那些不链接任何其他网页的网, 也称为孤立网页,使得很多网页能被访问到。因此需要对 PageRank公式进行修正,即在简单公式的基础上增加了阻尼系数(damping factor)q, q一般取值q=0.85。 其意义是,在任意时刻,用户到

8、达某页面后并继续向后浏览的概率。 1- q= 0.15就是用户停止点击,随机跳到新URL的概率)的算法被用到了所有页面上,估算页面可能被上网者放入书签的概率。 最后,即所有这些被换算为一个百分比再乘上一个系数q。由于下面的算法,没有页面的PageRank会是0。所以,Google通过数学系统给了每个页面一个最小值。 这个公式就是.S Brin 和 L. Page 在The Anatomy of a Large- scale Hypertextual Web Search Engine Computer Networks and ISDN Systems 定义的公式。 所以一个页面的PageRa

9、nk是由其他页面的PageRank计算得到。Google不断的重复计算每个页面的PageRank。如果给每个页面一个随机PageRank值(非0),那么经过不断的重复计算,这些页面的PR值会趋向于正常和稳定。这就是搜索引擎使用它的原因。4. PageRank幂法计算(线性代数应用)4.1 完整公式:关于这节内容,可以查阅:谷歌背后的数学首先求完整的公式:Arvind Arasu 在Junghoo Cho Hector Garcia - Molina, Andreas Paepcke, Sriram Raghavan. Searching the Web 更加准确的表达为:是被研究的页面,是链入

10、页面的数量,是链出页面的数量,而N是所有页面的数量。PageRank值是一个特殊矩阵中的特征向量。这个特征向量为:R是如下等式的一个解:如果网页i有指向网页j的一个链接,则否则0。4.2 使用幂法求PageRank 那我们PageRank 公式可以转换为求解的值, 其中矩阵为 A = q P + ( 1 一 q) * /N 。 P 为概率转移矩阵,为 n 维的全 1 行. 则 = 幂法计算过程如下: X 设任意一个初始向量, 即设置初始每个网页的 PageRank值均。一般为1. R = AX; while (1 )( if ( l X - R I ) /如果最后两次的结果近似或者相同,返回R

11、 return R; else X =R; R = AX; 4.3 求解步骤:一、 P概率转移矩阵的计算过程: 先建立一个网页间的链接关系的模型,即我们需要合适的数据结构表示页面间的连接关系。 1) 首先我们使用图的形式来表述网页之间关系: 现在假设只有四张网页集合:A、B、C,其抽象结构如下图1: 图1 网页间的链接关系 显然这个图是强连通的(从任一节点出发都可以到达另外任何一个节点)。 2)我们用矩阵表示连通图: 用邻接矩阵 P表示这个图中顶点关系 ,如果顶(页面)i向顶点(页面)j有链接情况 ,则pij = 1 ,否则pij = 0 。如图2所示。如果网页文件总数为N , 那么这个网页链

12、接矩阵就是一个N x N 的矩 阵 。 3)网页链接概率矩阵 然后将每一行除以该行非零数字之和,即(每行非0数之和就是链接网个数)则得到新矩阵P,如图3所示。 这个矩阵记录了 每个网页跳转到其他网页的概率,即其中i行j列的值表示用户从页面i 转到页面j的概率。图1 中A页面链向B、C,所以一个用户从A跳转到B、C的概率各为1/2。 4)概率转移矩阵P 采用P 的转置矩 阵进行计算, 也就是上面提到的概率转移矩阵P 。 如图4所示: 图2 网页链接矩阵: 图3 网页链接概率矩阵: 图4 P 的转置矩 阵二、 A矩阵计算过程。 1)P概率转移矩阵 : 2)/N 为: 3)A矩阵为:q P + ( 1 一 q) * /N = 0.85 P + 0.15 * /N 初始每个网页的 PageRank值均为1 , 即Xt = ( 1 , 1 , 1 ) 。三、 循环迭代计算PageRank的过程 第一步: 因为X 与R的差别较大。 继续迭代。 第二步: 继续迭代这个过程. 直到最后两次的结果近似或者相同,即R最终收敛,R 约等于X,此时计算停止。最终的R 就是各个页面的 PageRank 值。用幂法计算PageRank 值总是收敛的,即计算的次数是有限的。 Larry Page和Sergey Brin 两人从理论上证明了不论初始值如何选取,这种算法都保证了网页排名的估计值能收敛到他们的真

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > IT计算机/网络 > SEO/搜索引擎优化

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号