发酵培养基及制备

上传人:tia****nde 文档编号:66931013 上传时间:2019-01-06 格式:PPT 页数:77 大小:4.95MB
返回 下载 相关 举报
发酵培养基及制备_第1页
第1页 / 共77页
发酵培养基及制备_第2页
第2页 / 共77页
发酵培养基及制备_第3页
第3页 / 共77页
发酵培养基及制备_第4页
第4页 / 共77页
发酵培养基及制备_第5页
第5页 / 共77页
点击查看更多>>
资源描述

《发酵培养基及制备》由会员分享,可在线阅读,更多相关《发酵培养基及制备(77页珍藏版)》请在金锄头文库上搜索。

1、第三章 发酵培养基及其制备,主要内容,第一节 发酵培养基的选择 第二节 发酵培养基的设计与优化 第三节 发酵培养基的成分及来源 第四节 淀粉水解糖的制备 第五节 糖蜜原料 第六节 石油代粮发酵的原料 第七节 其他原料发酵,第一节 发酵培养基的选择,发酵培养基: 满足菌体的生长、促进产物的形成 要符合增产节约、因地制宜 能否设计出一个好的发酵培养基,是一个发酵产品工业化成功中非常关键的一环。,孢子培养基,孢子培养基是供菌种繁殖孢子的一种常用固体培养基,对这种培养基的要求是能使菌体迅速生长,产生较多优质的孢子,并要求这种培养基不易引起菌种发生变异。 配制要求: 营养不要太丰富,否则不宜产孢子。 所

2、用无机盐的浓度要适量,不然也会孢子量和孢子颜色。 要注意培养基的pH和湿度。,种子培养基,种子培养基是供是供微生物菌体的生长繁殖。为了在较短的时间内获得数量较多的强壮的种子细胞,种子培养基要求营养丰富、完全,氮源、维生素的比例应较高,所用的原料也应是易于被微生物菌体吸收利用。 配制要求: 营养比较丰富和完全,总浓度略稀薄; 成分接近于发酵培养基。,发酵培养基,发酵培养基是除需要维持微生物菌体的正常生长外,主要目的是合成预定的发酵产物,所以,发酵培养基碳源物质的含量往往要高于种子培养基。 发酵培养基还应考虑便于发酵操作以及不影响产物的提取分离和产品的质量。 要求: 发酵培养基的组成除有菌体生长所

3、必需的元素和化合物外,还要有合成产物所需的特定元素、前体和促进剂等; 考虑培养基用分批补料工艺。,对发酵培养基进行科学的设计,包括两个方面的内容: 是对发酵培养基的成分及原辅料材料的特性有较为详细的了解; 是在此基础上结合具体微生物和发酵产品的代谢特点及对培养基的成分进行合理的选择和优化。,一、发酵培养基选择的依据,根据微生物的特点选择培养基 细菌、酵母菌、霉菌、放线菌四类 根据不同用途选择培养基 液体培养基和固体培养基 根据生产实践和科学试验的不同要求选择 根据经济效益分析选择培养基 价廉、来源丰富、运输方便、就地取材、无毒,二、发酵培养基成分选择的原则,不同的微生物所需要的培养基成分是不同

4、的,要确定一个合适的培养基,就需要了解生产根据不同生产菌种的培养条件、生物合成的代谢途径、代谢产物的化学性质等确定培养基。,1菌体的同化能力,微生物来源和种类的不同,所能分泌的水解酶系。 酵母菌只能利用简单的糖类 :中国酒曲中含有丰富的淀粉酶和糖化酶,国外利用麦芽含有丰富的淀粉水解酶类。 许多碳源和氮源都是复杂的有机大分子,如豆饼粉、黄豆饼粉等。,1菌体的同化能力,微生物利用氮源的能力因菌种、菌龄的不同而有差异。 同一微生物处于生长不同阶段时,对氮源的利用能力不同,在生长早期容易利用易同化的铵盐和氨基氮,在生长中期则由于细胞的代谢酶系已经形成,则利用蛋白质的能力增强。因此在培养基中有机氮源和无

5、机氮源应当混合使用。,2代谢物的阻遏和诱导作用,对于快速利用的碳源如葡萄糖来讲,当菌体利用葡萄糖时产生的分解代谢产物会阻遏或抑制某些产物合成所需酶系的形成或酶的活性,即发生“葡萄糖效应”。 抗生素发酵生产时,考虑分批补料或连续补料的方式来解除。 酶制剂生产,难被利用的碳源(如淀粉、糊精等)有利于产酶,几乎都选用淀粉类原料作为碳源。,2代谢物的阻遏和诱导作用,有些产物会受氮源的诱导与阻遏 蛋白酶的生产受培养基中蛋白质或多肽的诱导,而受铵盐、硝酸盐、氨基氮的阻遏。这时在培养基氮源选取时应考虑以有机氮源(蛋白质类)为主。 在选择和配制发酵培养基时,要注意快速利用的碳(氮)源和慢速利用的碳(氮)源的相

6、互配合,发挥各自优势,避其所短。,3合适的碳氮比,培养基中的碳氮的比例(C/N)在发酵工业中尤为重要。 氮源过多,则菌体繁殖旺盛,pH偏高,不利于代谢产物的积累;氮源不足,则菌体繁殖量少,从而影响产量。 碳源过多,则容易形成较低的pH;碳源不足,菌体衰老和自溶。 碳氮比不当还会影响菌体按比例吸收营养物质,直接影响菌体生长和产物的形成,菌体在不同生长阶段,对其碳氮比的最适要求也不一样。,3合适的碳氮比,酵母细胞中碳氮比约为100:20, 霉菌约为100:10。 一般发酵工业中碳氮比约为l00:(0.2-2.0) 。 氨基酸发酵中,因为产物中含有氮,所以碳氮比就相对高一些。如谷氨酸发酵的C:N为1

7、00:(1521),若碳氮比为100:(0.22.0),则会出现只长菌体,几乎不产谷氨酸的现象。,理论+经验 根据前人的经验和培养基成分确定时一些必须考虑的问题,初步确定可能的培养基成分; 通过单因子实验最终确定出最为适宜的培养基成分; 采用合理的实验设计方法优化配方。 正交实验设计,方差分析 响应面法设计及分析,单因子实验,碳源的选择 氮源的选择 诱导剂及前体的选择 无机盐的选择,对于单因素或两因素试验,因其因素少 ,试验的设计 、实施与分析都比较简单 。但在实际工作中 ,常常需要同时考察 3个或3个以上的试验因素 ,若进行全面试验 ,则试验的规模将很大 ,往往因试验条件的限制而难于实施 。

8、正交试验设计就是安排多因素试验 、寻求最优水平组合 的一种高效率试验设计方法。,正交试验设计的概念及原理,例如,要考察增稠剂用量、pH值和杀菌温度对豆奶稳定性的影响。每个因素设置3个水平进行试验 。 A因素是增稠剂用量,设A1、A2、A3 3个水平;B因素是pH值,设B1、B2、B3 3个水平;C因素为杀菌温度,设C1、C2、C3 3个水平。这是一个3因素3水平的试验,各因素的水平之间全部可能组合有?种 。,3因素3水平的全面试验水平组合数为33=27,4因素3水平的全面试验水平组合数为34=81 ,5因素3水平的全面试验水平组合数为35=243,这在科学试验中是有可能做不到的。,1.1 正交

9、试验设计的基本概念 正交试验设计是利用正交表来安排与分析多因素试验的一种设计方法。它是由试验因素的全部水平组合中,挑选部分有代表性的水平组合进行试验的,通过对这部分试验结果的分析了解全面试验的情况,找出最优的水平组合。,(1)A1B1C1 (2)A2B1C2 (3)A3B1C3 (4)A1B2C2 (5)A2B2C3 (6)A3B2C1 (7)A1B3C3 (8)A2B3C1 (9)A3B3C2,A3,A2,A1,B3,C3,这9个试验点在选优区中分布是均衡的,在立方体的每个平面上 ,都恰是3个试验点;在立方体的每条线上也恰有一个试验点。 9个试验点均衡地分布于整个立方体内,有很强的代表性,

10、能够比较全面地反映选优区内的基本情况。,正交表 由于正交设计安排试验和分析试验结果都要用正交表,因此,我们先对正交表作一介绍。,其中“L”代表正交表;L右下角的数字“8”表示有8行 ,用这张正交表安排试验包含8个处理(水平组合) ;括号内的底数“2” 表示因素的水平数,括号内2的指数“7”表示有7列 ,用这张正交表最多可以安排7个2水平因素。,L9(34)正交表,D,正交试验设计的基本程序,对于多因素试验,正交试验设计是简单常用的一种试验设计方法,正交试验设计的基本程序包括试验方案设计及试验结果分析两部分。,试验目的与要求,试验指标,选因素、定水平,因素、水平确定,选择合适正交表,表头设计,列

11、试验方案,试验方案设计:,试验结果分析,进行试验,记录试验结果,试验结果极差分析,计算K值,计算k值,计算极差R,绘制因素指标趋势图,优水平,因素主次顺序,优组合,结 论,试验结果分析:,试验结果方差分析,列方差分析表,进行F 检验,计算各列偏差平方和、自由度,分析检验结果,写出结论,实例:为提高山楂原料的利用率,研究酶法液化工艺制造山楂原汁,拟通过正交试验来寻找酶法液化的最佳工艺条件。,2.1 试验方案设计,试验设计前必须明确试验目的,即本次试验要解决什么问题。试验目的确定后,对试验结果如何衡量,即需要确定出试验指标。试验指标可为定量指标,如强度、硬度、产量、出品率、成本等;也可为定性指标如

12、颜色、口感、光泽等。一般为了便于试验结果的分析,定性指标可按相关的标准打分或模糊数学处理进行数量化,将定性指标定量化。,(1) 明确试验目的,确定试验指标,对本试验而言,试验目的是为了提高山楂原料的利用率。所以可以以液化率液化率=(果肉重量-液化后残渣重量)/果肉重量100%为试验指标,来评价液化工艺条件的好坏。液化率越高,山楂原料利用率就越高。,根据专业知识、以往的研究结论和经验,从影响试验指标的诸多因素中,通过因果分析筛选出需要考察的试验因素。一般确定试验因素时,应以对试验指标影响大的因素、尚未考察过的因素、尚未完全掌握其规律的因素为先。 试验因素选定后,根据所掌握的信息资料和相关知识,确

13、定每个因素的水平,一般以2-4个水平为宜。对主要考察的试验因素,可以多取水平,但不宜过多(6),否则试验次数骤增。因素的水平间距,应根据专业知识和已有的资料,尽可能把水平值取在理想区域。,(2) 选因素、定水平,列因素水平表,对本试验分析,影响山楂液化率的因素很多,如山楂品种、山楂果肉的破碎度、果肉加水量、原料pH 值、果胶酶种类、加酶量、酶解温度、酶解时间等等。经全面考虑,最后确定果肉加水量、加酶量、酶解温度和酶解时间为本试验的试验因素,分别记作A、B、C和D,进行四因素正交试验,各因素均取三个水平,因素水平表见表所示。,因素水平表,Kjm,kjm,计算简便,直观,简单易懂,是正交试验结果分

14、析最常用方法。,正交试验的结果分析,直观分析法极差分析法,极差分析法R法,1. 计算,2. 判断,Rj,因素主次,优水平,优组合,Kjm为第j列因素m水平所对应的试验指标和,kjm为Kjm平均值。由kjm大小可以判断第j列因素优水平和优组合。,Rj为第j列因素的极差,反映了第j列因素水平波动时,试验指标的变动幅度。Rj越大,说明该因素对试验指标的影响越大。根据Rj大小,可以判断因素的主次顺序。,(1) 确定试验因素的优水平和最优水平组合,分析A因素各水平对试验指标的影响。由表3可以看出,A1的影响反映在第1、2、3号试验中,A2的影响反映在第4、5、6号试验中,A3的影响反映在第7、8、9号试

15、验中。 A因素的1水平所对应的试验指标之和为KA1=y1+y2+y3=0+17+24=41,kA1= KA1/3=13.7; A因素的2水平所对应的试验指标之和为KA2=y4+y5+y6=12+47+28=87,kA2=KA2/3=29; A因素的3水平所对应的试验指标之和为KA3=y7+y8+y9=1+18+42=61,kA3=KA3/3=20.3。,不考察交互作用的试验结果分析,根据正交设计的特性,对A1、A2、A3来说,三组试验的试验条件是完全一样的(综合可比性),可进行直接比较。如果因素A对试验指标无影响时,那么kA1、kA2、kA3应该相等,但由上面的计算可见,kA1、kA2、kA3

16、实际上不相等。说明,A因素的水平变动对试验结果有影响。因此,根据kA1、kA2、kA3的大小可以判断A1、A2、A3对试验指标的影响大小。由于试验指标为液化率,而kA2kA3kA1,所以可断定A2为A因素的优水平。,同理,可以计算并确定B3、C3、D1分别为B、C、D因素的优水平。四个因素的优水平组合A2B3C3D1为本试验的最优水平组合,即酶法液化生产山楂清汁的最优工艺条件为加水量50mL/100g,加酶量7mL/100g,酶解温度为50,酶解时间为1.5h。,根据极差Rj的大小,可以判断各因素对试验指标的影响主次。,(2) 确定因素的主次顺序,以各因素水平为横坐标,试验指标的平均值(kjm)为纵坐标,绘制因素与指标趋势图。由因素与指标趋势图可以更直观地看出试验指标随着因素水平的变化而变化的趋势,可为进一步试验指明方向。,(3) 绘制因素与指标趋势

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号