CN2011103036054A 高效单相光伏并网逆变器 1-10

上传人:re****.1 文档编号:664553 上传时间:2017-05-06 格式:PDF 页数:10 大小:637.56KB
返回 下载 相关 举报
CN2011103036054A 高效单相光伏并网逆变器 1-10_第1页
第1页 / 共10页
CN2011103036054A 高效单相光伏并网逆变器 1-10_第2页
第2页 / 共10页
CN2011103036054A 高效单相光伏并网逆变器 1-10_第3页
第3页 / 共10页
CN2011103036054A 高效单相光伏并网逆变器 1-10_第4页
第4页 / 共10页
CN2011103036054A 高效单相光伏并网逆变器 1-10_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《CN2011103036054A 高效单相光伏并网逆变器 1-10》由会员分享,可在线阅读,更多相关《CN2011103036054A 高效单相光伏并网逆变器 1-10(10页珍藏版)》请在金锄头文库上搜索。

1、(10)申请公布号 CN 103036463 A(43)申请公布日 2013.04.10CN103036463A*CN103036463A*(21)申请号 201110303605.4(22)申请日 2011.10.10H02M 7/48(2007.01)H02M 7/537(2006.01)H02J 3/38(2006.01)(71)申请人艾伏新能源科技(上海)股份有限公司地址 201112 上海市闵行区联航路1588号2幢业务楼B楼一层、二层(72)发明人赵方平 杨勇 王仁峰(54) 发明名称高效单相光伏并网逆变器(57) 摘要高效单相光伏并网逆变器,它涉及电力电子功率变换技术领域。电感(

2、L2)的另一端分别与续流二极管(D2)的正极和高频开关管(S2)的栅极连接,光伏电池板(PV)的另一端和电容(C1)的负极均分别与高频开关管(S2)的发射极和高频开关管(S4)的发射极连接,电感(L1)的另一端分别与续流二极管(D1)的正极和高频开关管(S4)的栅极连接,继电器(K2)的另一端与电网的另一端连接。它针对无变压器的单相光伏并网逆变器如果不加控制,避免光伏电池板和大地之间生产很大漏电电流的现象,使得漏电电流很小,达到并网和安规要求;控制相对简单,整体效率提高,且其拓扑结构最高效率可达到98%。(51)Int.Cl.权利要求书1页 说明书3页 附图5页(19)中华人民共和国国家知识产

3、权局(12)发明专利申请权利要求书 1 页 说明书 3 页 附图 5 页1/1页21. 高效单相光伏并网逆变器,其特征在于它包含光伏电池板(PV)、低频开关管(S1)和(S3)、高频开关管(S2)和(S4)、续流二极管(D1)-(D2)、电容(C1)-(C2)、电感(L1)-(L2)和继电器(K1)-(K2),电网的一端与继电器(K1)的一端连接,继电器(K1)的另一端分别与电容(C2)的正极、低频开关管(S1)的发射极和电感(L2)的一端连接,电容(C2)的负极分别与继电器(K2)的一端、低频开关管(S3)的发射极和电感(L1)的一端连接,低频开关管(S1)的集电极分别与续流二极管(D2)的

4、负极、低频开关管(S3)的集电极、续流二极管(D1)的负极、电容(C1)的正极和光伏电池板(PV)的一端连接,电感(L2)的另一端分别与续流二极管(D2)的正极和高频开关管(S2)的栅极连接,光伏电池板(PV)的另一端和电容(C1)的负极均分别与高频开关管(S2)的发射极和高频开关管(S4)的发射极连接,电感(L1)的另一端分别与续流二极管(D1)的正极和高频开关管(S4)的栅极连接,继电器(K2)的另一端与电网的另一端连接。权 利 要 求 书CN 103036463 A1/3页3高效单相光伏并网逆变器技术领域0001 本发明涉及电力电子功率变换技术领域,具体涉及高效单相光伏并网逆变器。背景技

5、术0002 在能源的日益枯竭的背景下,开发和利用可再能源越来越重视。太阳能光伏发电是新能源的重要组成部分,被认为是当前世界上最有发展前景的新能源技术。光伏并网逆变器从安全的角度考虑要求光伏并网逆变系统和电网实现电气隔离。而电气隔离通常用工频变压器或高频变压器来实现。工频并网逆变首先通过直流交流(DC/AC)变换器将光伏阵列输出的直流电转换为交流电,然后再通过工频变压器和电网相连。高频光伏并网逆变器首先通过带高频隔离变压器直流直流(DC/DC)变换器将直流电压进行电压等级变换,然后通过DC/AC逆变器将能量馈入电网。由于工隔或高频隔离变压器的加入,使得系统的整体效率下降1%2%。无变压器式并网逆

6、变器结构不含变压器(低频和高频),具有效率高、体积、重量和成本低的绝对优势。因此,越来越多的商用光伏并网逆变器采用这种拓扑结构。但是,无隔离变压器并网逆变器使光伏(PV)和电网之间有了电气连接,共模电流大大增加,带来安全隐患。采用无变压器的并网逆变器必须解决的一个问题是如何消除共模电压在寄生电容(PV和大地之间)形成回路所产生的漏电流。德国SMA SunnyBoy 公司采用H5拓扑结构(中国发明专利号:200510079923.1),在该拓扑结构中,V1和V2在电网电流的正负半周各自导通,V4、V5在电网正半周以开关频率调制,而V2、V5在电网负半周期以开关频率调制。这种无变压器拓扑结构,可以

7、很好的解决漏电流问题;同时,其最高效率达到98.1%,欧洲效率达到97.7%。Sunways公司采用HERIC(欧洲专利号:EP 1369985 A2)拓扑结构,该拓扑是对双极性调制的全桥拓扑的改进,即在全桥拓扑的交流侧增加一个由2个IGBT组成的双向续流支路,使得续流回路与直流侧断开,同样可以有效解决漏电流问题,其最高效率达到96.3%。文献(Transformerless Inverters for Single-phase Photovoltaic SystemsJ. IEEE Transactions on power electronics, 2007,22(2):693-697)提

8、出一种新的拓扑结构FB-DCBP(full-bridge with dc-bypass),在电网电压正半周期,开关管S1、S4始终保持导通,开关管S5、S6与S2、S3交替导通;在电网电压负半周期,开关管S2、S3始终保持导通,开关管S5、S6与S1、S4交替导通。该拓扑结构很好的解决了漏电流问题,其最高效率可达到97.4%。0003 发明内容0004 本发明的目的是提供高效单相光伏并网逆变器,它针对无变压器的单相光伏并网逆变器如果不加控制,避免光伏电池板和大地之间生产很大漏电电流的现象,使得漏电电流很小,达到并网和安规要求。0005 为了解决背景技术所存在的问题,本发明是采用以下技术方案:它

9、包含光伏电池板PV、低频开关管S1和S3、高频开关管S2和S4、续流二极管D1-D2、电容C1-C2、电感L1-L2说 明 书CN 103036463 A2/3页4和继电器K1-K2,电网的一端与继电器K1的一端连接,继电器K1的另一端分别与电容C2的正极、低频开关管S1的发射极和电感L2的一端连接,电容C2的负极分别与继电器K2的一端、低频开关管S3的发射极和电感L1的一端连接,低频开关管S1的集电极分别与续流二极管D2的负极、低频开关管S3的集电极、续流二极管D1的负极、电容C1的正极和光伏电池板PV的一端连接,电感L2的另一端分别与续流二极管D2的正极和高频开关管S2的栅极连接,光伏电池

10、板PV的另一端和电容C1的负极均分别与高频开关管S2的发射极和高频开关管S4的发射极连接,电感L1的另一端分别与续流二极管D1的正极和高频开关管S4的栅极连接,继电器K2的另一端与电网的另一端连接。0006 本发明针对无变压器的单相光伏并网逆变器如果不加控制,避免光伏电池板和大地之间生产很大漏电电流的现象,使得漏电电流很小,达到并网和安规要求;控制相对简单,整体效率提高,且其拓扑结构最高效率可达到98%。0007 附图说明:图1为本发明的结构示意图。0008 图2为图1中其漏电电流的回路。0009 图3为本发明PWM调制模式的结构示意图。0010 图4为图1中电网电压正半周期高频开关管S4开通

11、时电流流向的结构示意图。0011 图5为图1中电网电压正半周期高频开关管S4关断时电流流向的结构示意图。0012 图6为图1中电网电压负半周期高频开关管S2开通时电流流向的结构示意图。0013 图7为图1中电网电压负半周期高频开关管S2关断时电流流向的结构示意图。0014 图8为本发明控制策略的结构示意图。0015 图9-图10为本发明不同调制模式下输出的电压Uab及漏电流iCM的结构示意图。0016 具体实施方式:参照图1-图10,本具体实施方式采用以下技术方案:它包含光伏电池板PV、低频开关管S1和S3、高频开关管S2和S4、续流二极管D1-D2、电容C1-C2、电感L1-L2和继电器K1

12、-K2,电网的一端与继电器K1的一端连接,继电器K1的另一端分别与电容C2的正极、低频开关管S1的发射极和电感L2的一端连接,电容C2的负极分别与继电器K2的一端、低频开关管S3的发射极和电感L1的一端连接,低频开关管S1的集电极分别与续流二极管D2的负极、低频开关管S3的集电极、续流二极管D1的负极、电容C1的正极和光伏电池板PV的一端连接,电感L2的另一端分别与续流二极管D2的正极和高频开关管S2的栅极连接,光伏电池板PV的另一端和电容C1的负极均分别与高频开关管S2的发射极和高频开关管S4的发射极连接,电感L1的另一端分别与续流二极管D1的正极和高频开关管S4的栅极连接,继电器K2的另一

13、端与电网的另一端连接。0017 所述的光伏电池板PV为整个系统包括控制电路提供电能。在白天光照的条件下,太阳能电池阵列将所接收的光能转换为电能经过直流变交流(DC AC)逆变器将直流转换为交流,向电网输送功率;天黑时,整个系统自动停止工作,利用继电器使输出端与电网断开。0018 在无变压器的非隔离光伏并网系统中,电网与光伏阵列之间存在直接的电气连接,由于光伏阵列和地之间存在寄生电容,形成由寄生电容、直流侧和交流滤波器以及电网阻抗形成共模谐振回路。寄生电容上共模电压的变化会在寄生电容上产生共模电流(漏电说 明 书CN 103036463 A3/3页5流)。为抵制无变压器单相光伏逆变器的漏电流,应

14、尽量使共模电压变化比较小。若能Ucm为一定值,则能够基本上消除共模电流,即功率器件采用PWM控制使得a和b点对O点的电压之和满足:作为并网逆变器的关键环节,对电能变换起非常关键的作用。通过控制H桥和续流回路使光伏逆变器输出电流与电网电压同相位,同时实现光伏阵列最大功率输出和抑制漏电流,提高整个光伏系统的转换效率。0019 通过锁相环得到电网空间角度的信息,在电网电压正半周时,电网电压正半周时,低频开关管S1一直保持开通,高频开关管S4采用PWM调制,低频开关管S3和高频开关管S2关闭。0020 当高频开关管S4开通时,此时DCAC逆变器的电流回路为:开关管S1电网电感L1高频开关管S4电容C1

15、当高频开关管S4关断时,此时DCAC逆变器的电流回路为:开关管S1电网电感L1续流二极管D1开关管S1通过锁相环得到电网空间角度的信息,在电网电压负半周时,低频开关管S3一直保持开通,高频开关管S2采用PWM调制。低频开关管S1和高频开关管S4关闭。0021 当高频开关管S2开通时,此时DCAC逆变器的电流回路为:开关管S3电网电感L2高频开关管S2电容C1当高频开关管S2关断时,此时DCAC逆变器的电流回路为:开关管S3电网电感L2续流二极管D2开关管S3本具体实施方式针对无变压器的单相光伏并网逆变器如果不加控制,避免光伏电池板和大地之间生产很大漏电电流的现象,使得漏电电流很小,达到并网和安规要求;控制相对简单,整体效率提高,且其拓扑结构最高效率可达到98%。说 明 书CN 103036463 A1/5页6图1图2说 明 书 附 图CN 103036463 A2/5页7图3图4说 明 书 附 图CN 103036463 A3/5页8图5图6说 明 书 附 图CN 103036463 A4/5页9图7图8说 明 书 附 图CN 103036463 A5/5页10图9图10说 明 书 附 图CN 103036463 A10

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 电子/通信 > 电子电气自动化

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号