固体中原子与分子运动.

上传人:101****457 文档编号:60626874 上传时间:2018-11-18 格式:PPT 页数:45 大小:1.45MB
返回 下载 相关 举报
固体中原子与分子运动._第1页
第1页 / 共45页
固体中原子与分子运动._第2页
第2页 / 共45页
固体中原子与分子运动._第3页
第3页 / 共45页
固体中原子与分子运动._第4页
第4页 / 共45页
固体中原子与分子运动._第5页
第5页 / 共45页
点击查看更多>>
资源描述

《固体中原子与分子运动.》由会员分享,可在线阅读,更多相关《固体中原子与分子运动.(45页珍藏版)》请在金锄头文库上搜索。

1、固体中原子及分子的运动,表象理论 扩散的热力学分析 扩散的原子理论 扩散激活能 无规则行走与扩散距离,影响扩散的因素 反应扩散 离子晶体中的扩散 高分子的分子运动,概要,物质的迁移可通过对流和扩散两种方式进行。在气体和液体中物质的迁移一般是通过对流和扩散来实现的。但在固体中不发生对流,扩散是唯一的物质迁移方式,其原子或分子由于热运动不断地从一个位置迁移到另一个位置。扩散是固体材料中的一个重要现象,诸如金属铸件的凝固及均匀化退火,冷变形金属的回复和再结晶,陶瓷或粉末冶金的烧结,材料的固态相变,高温蠕变,以及各种表面处理等等,都与扩散密切相关。要深入地了解和控制这些过程,就必须先掌握有关扩散的基本

2、规律。研究扩散一般有两种方法: 表象理论一根据所测量的参数描述物质传输的速率和数量等; 原子理论一扩散过程中原子是如何迁移的。,概要,本章主要讨论固体材料中扩散的一般规律、扩散的影响因素和扩散机制等内容 固体材料涉及金属、陶瓷和高分子化合物三类; 金属中的原子结合是以金属键方式; 陶瓷中的原子结合主要是以离子键结合方式为主; 而高分子化合物中的原子结合方式是共价键或氢键结合,并形成长链结构,这就导致了三种类型固体中原子或分子扩散的方式不同,描述它们各自运动方式的特征也是本章的主要目的之一。,扩散(diffusion): 在一个相内因分子或原子的热激活运动导致成分混合或均匀化的分子动力学过程。,

3、高碳含量区域,低碳含量区域,碳的扩散方向,Fe-C合金,概要,气体: 扩散+对流,固体: 扩散,液体: 扩散+对流,金属,陶瓷,高分子,键属金,离 子 键,共价键,表象理论,菲克第一定律 当固体中存在着成分差异时,原子将从浓度高处向浓度低处扩散。如何描述原子的迁移速率,阿道夫菲克(Adolf Fick)对此进行了研究,并在1855年就得出:扩散中原子的通量与质量浓度梯度成正比,即 该方程称为菲克第一定律或扩散第一定律。式中,J为扩散通量,表示单位时间内通过垂直于扩散方向x的单位面积的扩散物质质量,其单位为kg/(m2s);D为扩散系数,其单位为m2/s;而r是扩散物质的质量浓度,其单位为kg/

4、m3。式中的负号表示物质的扩散方向与质量浓度梯度。,应用:测定碳在-Fe中的扩散系数,lr,稳态时: 单位时间内通过半径为r(r2rr1) 的圆柱管壁的碳量为常数: q/t,结论: 1. 当lnr与呈直线关系时,D与碳浓度无关 2. 当lnr与为曲线关系时,D是碳浓度的函数,径向通量:,由菲克第一定律得:,J: 扩散通量(mass flux), kg/(m2s) D: 扩散系数(diffusivity), m2/s : 质量浓度,kg/m3 : 浓度梯度,若D与浓度无关,则:,对三维各向同性的情况:,菲克定律描述了固体中存在浓度梯度时发生的扩散,称为化学扩散;当扩散不依赖于浓度梯度,仅由热振动

5、而引起时,则称为自扩散。,定义:自扩散系数,推导过程:菲克第一定律+质量守恒,扩散方程的解应用,第一定律求解一阶微分方程 第二定律设置中间变量求通解(高斯解 Gauss solution、误差函数解error function solution、正玄解 sinusoidal solution) ,解微分方程初始条件,边界条件求方程式。 1.两端成分不受扩散影响的扩散偶(diffusion couple)焊接过程 解微分方程 引入中间变量和误差函数 求通解 边界条件 和初始条件 求特解,x0 则 1 t0 x0 则 2,x 则 1 t0 x 则 2,1=0,2.一端成分不受扩散影响的扩散体表面热

6、处理过程 初始条件 t=0, x0, =0 边界条件 t0, x=0, =s x=, =0 求解方法同上,特解为 工业生产中经常采用渗碳(Carburizing)的方法来提高钢铁零件的表面硬度,所谓渗碳就是使碳原子由零件表面向内部扩散,以提高钢的含碳量。含碳量越高,钢的硬度越高。 例题:p133 思考:若想将渗碳厚度增加一倍,需增加多少渗碳时间?,(1) 对于同一扩散系统、扩散系数D与扩散时间t的乘积为一常数。 例题1:已知Cu在Al中扩散系数D,在500和600分别为4.810-14ms-1和5.310-13ms-1,假如一个工件在600需要处理10h,若在500处理时,要达到同样的效果,需

7、要多少小时?(需110.4小时) (2) 对于钢铁材料进行渗碳处理时,x与t的关系是t x。 例题2:假设对Wc=0.25%的钢件进行渗碳处理,要求渗层0.5处的碳浓度为0.8%,渗碳气体浓度为Wc=1.2%,在950进行渗碳,需要7小时,如果将层深厚度提高到1.0,需要多长时间?(需要28小时),3.衰减薄膜源表面沉积过程 初始条件 t=0, x0, = x 0, =0 边界条件 t0, x=, =0 高斯特解为 4.枝晶成份偏析的均匀化 初始条件 t=0, 边界条件 t, x=0, = 0 任意时刻 正弦特解为,置换固溶体中的扩散,由于置换型原子原子半径与基体相差不大,二者(溶质和溶剂原子

8、)扩散速率不同,发生Kirkendall效应。 Kirkendall效应 置换固溶体中的扩散是Kirkendall和Darken效应的结合。 Darken导出了置换固溶体的扩散第一定律形式: 引入互扩散系数(mutual diffusion coefficient):,置换固溶体中的扩散,假设:组元间的扩散互不干涉;扩散过程中空位浓度不变;扩散驱动力为d/dx,实验获得标记漂移速度: 引入互扩散系数,则有 应用:测定某温度下的互扩散系数,标记漂移速度v和d/dx,可求出两种元子的扩散系数D1和D2。,扩散系数与浓度有关时的解,D与有关时,Fick第二定律为式 Boltzmann引入中间变量:

9、使偏微分方程变为常微分方程。 根据无限长的扩散偶(diffusion couple)的初始条件为 t=0时 x0 =0;x0 = 0; 引入中间量后的初始条件: t=0时= + =0 ;= ,=0 得通解:,积分得,0,俣野面,x=0 扩散前的原始界面,扩散的热力学分析,菲克第一定律描述了物质从高浓度向低浓度扩散的现象,扩散的结果导致浓度梯度的减小,使成份趋于均匀。但实际上并非所有的扩散过程都是如此,物质也可能从低浓度区向高浓度区扩散,扩散的结果提高了浓度梯度。例如铝铜合金时效早期形成的富铜偏聚区,以及某些合金固溶体的调幅分解形成的溶质原子富集区等,这种扩散称为“上坡扩散”或“逆向扩散”。从热

10、力学分析可知,扩散的驱动力并不是浓度梯度 ,而应是化学势梯度 ,由此不仅能解释通常的扩散现象,也能解释“上坡扩散”等反常现象。决定组元扩散的基本因素是化学势梯度,不管是上坡扩散还是下坡扩散,其结果总是导致扩散组元化学势梯度的减小,直至化学势梯度为零。,扩散的热力学分析,引起上坡扩散还可能有以下一些情况: 弹性应力的作用。晶体中存在弹性应力梯度时,它促使较大半径的原子跑向点阵伸长部分,较小半径原子跑向受压部分,造成固溶体中溶质原子的不均匀分布。 晶界的内吸附。晶界能量比晶内高,原子规则排列较晶内差,如果溶质原子位于晶界上可降低体系总能量,它们会优先向晶界扩散,富集于晶界上,此时溶质在晶界上的浓度

11、就高于在晶内的浓度。 大的电场或温度场也促使晶体中原子按一定方向扩散,造成扩散原子的不均匀性。,扩散的原子理论,扩散机制 在晶体中,原子在其平衡位置作热振动,并会从一个平衡位置跳到另一个平衡位置,即发生扩散,一些可能的扩散机制总结在下图中。,扩散的原子理论,1交换机制(exchange mechanism) 相邻原子的直接交换,即两个相邻原子互换了位置。4个原子同时交换(环形换位,cyclic exchange),其所涉及到的能量远小于直接交换。 2间隙机制(interstitial mechanism) 在间隙扩散机制中,原子从一个晶格中间隙位置迁移到另一个间隙位置。 置换型溶质原子间隙机制

12、扩散有如下方式: a.推填机制(interstitialcy mechanism)(也叫篡位式) b. 挤列机制(crowdion configuration) c. 跃迁机制(jump migration) 3空位机制 晶体中存在着空位。这些空位的存在使原子迁移更容易,故大多数情况下,原子扩散是借助空位机制。空位机制产生Kirkendall效应。,扩散的原子理论,4晶界扩散及表面扩散 对于多晶材料,扩散物质可沿三种不同路径进行,即晶体内扩散(或称体扩散),晶界扩散和样品自由表面扩散,并分别用DL和DB和DS表示三者的扩散系数。 晶体内扩散DL 晶界扩散Db 表面扩散Ds 5. 位错扩散 原子

13、通过位错扩散。温度越低,原子在位错中的时间越长,在点阵中跳动的时间越短。 把原子在缺陷中的扩散称为短路扩散(short-circuit diffusion)。固态金属或合金中的扩散主要依靠晶体缺陷来进行。,扩散的原子理论,原子跳跃和扩散系数 1原子跳跃频率 以间隙固溶体为例,溶质原子的扩散一般是从一个间隙位置跳跃到其近邻的另一个间隙位置。 (left)面心立方结构的八面体间隙及(100)晶面 (right) 原子的自由能与其位置的关系,扩散的原子理论,左图(a)为面心立方结构的八面体间隙中心位置,左图(b)为面心立方结构(100)晶面上的原子排列。图中1代表间隙原子的原来位置,2代表跳跃后的位

14、置。在跳跃时,必须把原子3与原子4或这个晶面上下两侧的相邻原子推开,从而使晶格发生局部的瞬时畸变,这部分畸变就构成间隙原子跳跃的阻力,这就是间隙原子跳跃时所必须克服的能垒。 如右图所示,间隙原子从位置1跳到位置2的能垒GG2-G1,因此只有那些自由能超过G2的原子才能发生跳跃。 2扩散系数 对于间隙型扩散,设原子的振动频率为v,溶质原子最邻近的间隙位置数为z(即间隙配位数),则 应是v,z,以及具有跳跃条件的原子分数eG/ kT的乘积,即,扩散的原子理论,式中D0称为扩散常数;U是间隙扩散时溶质原子跳跃所需额外的热力学内能,该迁移能等于间隙原子的扩散激活能Q。 上述式的扩散系数都遵循阿累尼乌斯

15、(Arrhenius)方程: 式中,R为气体常数,其值为8.314J/(mol K);Q代表每摩尔原子的激活能,T为绝对温度。由此表明,不同扩散机制的扩散系数表达形式相同,但D0和Q值不同。,扩散激活能,当晶体中的原子以不同方式扩散,所需的扩散激活能Q值是不同的。在间隙扩散机制中,Q=U;在空位扩散机制中,Q=U+UV。除此外,还有晶界扩散、表面扩散、位错扩散,它们的扩散激活能是各不相同的,因此,求出某种条件的扩散激活能,对于了解扩散的机制是非常重要的。,无规则行走与扩散距离,如果扩散原子是直线运动,那么原子行走的距离应与时间成正比,但前述的计算表明,其与时间的平方根成正比,由此推断扩散原子的

16、行走很可能像花粉在水面上的布朗运动那样,原子可向各个方向随机地跳跃,是一种无规则行走(random walk)。 因为原子的跃迁是随机的,每次跃迁的方向与前次跃迁方向无关,对任一矢量方向的跃迁都具有相同的频率,则可得,影响扩散的因素,1温度 温度是影响扩散速率的最主要因素。温度越高,原子热激活能量越大,越易发生迁移,扩散系数越大。 2固溶体类型 不同类型的固溶体,原子的扩散机制是不同的。间隙固溶体的扩散激活能一般均较小,例如,C,N等溶质原子在铁中的间隙扩散激活能比Cr,Al等溶质原子在铁中的置换扩散激活能要小得多,因此,钢件表面热处理在获得同样渗层浓度时,渗C,N比渗Cr或Al等金属的周期短。 3晶体结构 晶体结构对扩散有影响,有些金属存在同素异构转

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号