陶瓷隔热材料

上传人:bin****86 文档编号:60383623 上传时间:2018-11-15 格式:DOCX 页数:16 大小:24.26KB
返回 下载 相关 举报
陶瓷隔热材料_第1页
第1页 / 共16页
陶瓷隔热材料_第2页
第2页 / 共16页
陶瓷隔热材料_第3页
第3页 / 共16页
陶瓷隔热材料_第4页
第4页 / 共16页
陶瓷隔热材料_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《陶瓷隔热材料》由会员分享,可在线阅读,更多相关《陶瓷隔热材料(16页珍藏版)》请在金锄头文库上搜索。

1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划陶瓷隔热材料陶瓷材料的工艺流程与性能包装1402胡淑慧陶瓷产品在现实生活中的应用越来越多,陶瓷这种新型材料也被大多数人知晓。陶瓷是陶器和瓷器的总称。人们早在约8000年前的新石器时代就发明了陶器。常见的陶瓷材料有粘土、氧化铝、高岭土等。陶瓷材料一般硬度较高,但可塑性较差。除了使用于食器、装饰上外,陶瓷在科学、技术的发展中亦扮演着重要角色。陶瓷原料是地球原有的大量资源黏土经过淬取而成。而粘土的性质具韧性,常温遇水可塑,微干可雕,全干可磨;烧至700度可成陶器能装水;烧至1230度则瓷化

2、,可几乎完全不吸水且耐高温耐腐蚀。其用法之弹性,在今日文化科技中有各种创意的应用。发明了陶器。陶瓷材料大多是氧化物、氮化物、硼化物和碳化物等。人们研究构成陶瓷的陶瓷材料的基础,使陶瓷的概念发生了很大的变化。陶瓷内部的力学性能是与构成陶瓷的材料的化学键结构有关,在形成晶体时能够形成比较强的三维网状结构的化学物质都可以作为陶瓷的材料。这重要包括比较强的离子键的离子化合物,能够形成原子晶体的单质和化合物,以及形成金属晶体的物质。他们都可以作为陶瓷材料。其次人们借鉴三维成键的特点发展了纤维增强复合材料。更进一步拓宽了陶瓷材料的范围。因此陶瓷材料发展成了可以借助三维成键的材料的通称。陶瓷的概念就发展成为

3、可以借助三维成键的材料,通过成型和高温烧结所得到的烧结体。研究陶瓷的结构和性能的理论也得到了展开:陶瓷材料,内部微结构对力学性能的影响得到了发展。材料(光,电,热,磁)性能和成形关系,以及粒度分布,胶着界面的关系也得到发展,陶瓷应当成为承载一定性能物质存在形态。这里应该和量子力学,纳米技术,表面化学等学科关联起来。陶瓷学科成为一个综合学科。这种发展在一定程度上和高分子成型关联起来。它们应当相互影响。陶瓷的工艺性能有力学性能,热特性,电特性,化学特性,光学特性等。1.力学性能。陶瓷材料是工程材料中刚度最好、硬度最高的材料,其硬度大多在1500HV以上。陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧

4、性很差。2.热性能。陶瓷材料一般具有高的熔点(大多在XX以上),且在高温下具有极好的化学稳定性;陶瓷的导热性低于金属材料,陶瓷还是良好的隔热材料。同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性。3.电特性。大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压(1kV110kV)的绝缘器件。铁电陶瓷(钛酸钡BaTiO3)具有较高的介电常数,可用于制作电容器,铁电陶瓷在外电场的作用下,还能改变形状,将电能转换为机械能(具有压电材料的特性),可用作扩音机、电唱机、超声波仪、声纳、医疗用声谱仪等。少数陶瓷还具有半导体的特性,可作整流器。4.化学性能。陶瓷材料在高温下不易氧化

5、,并对酸、碱、盐具有良好的抗腐蚀能力。5.光学性能。陶瓷材料还有独特的光学性能,可用作固体激光器材料、光导纤维材料、光储存器等,透明陶瓷可用于高压钠灯管等。磁性陶瓷(铁氧体如:MgFe2O4、CuFe2O4、Fe3O4)在录音磁带、唱片、变压器铁芯、大型计算机记忆元件方面的应用有着广泛的前途。那么陶瓷为何具有这些性能呢?而这些性能的远离优势什么呢?首先来看下什么事热交换。热交换的基本途径为:传导、对流和辐射。为了有效散热,人们常通过减少热流途径的热阻和加强对流系数来实现,往往忽略了热辐射。LED灯具一般采用自然对流散热,散热器将LED产生的热量快速传递到散热器表面,由于对流系数较低,热量不能及

6、时地散发到周围的空气中,导致表面温度升高,LED的工作环境恶化。提高辐射率可以有效地将散热器表面的热量通过热辐射的形式带走,一般铝制散热器通过阳极氧化来提高表面辐射率,陶瓷材料本身可以具有高辐射率特性,不必进行复杂的后续处理。陶瓷材料的辐射机理是由随机性振动的非谐振效应的二声子和多声子产生。高辐射陶瓷材料如碳化硅、金属氧化物、硼化物等均存在极强的红外激活极性振动,这些极性振动由于具有极强的非谐效应,其双频和频区的吸收系数,一般具有100100cm-1数量级,相当于中等强度吸收区在这个区域剩余反射带的较低反射率,因此,有利于形成一个较平坦的强辐射带。一般来说,具有高热辐射效率的辐射带,大致是从强

7、共振波长延伸到短波整个二声子组合和频区域,包括部分多声子组合区域,这是多数高辐射陶瓷材料辐射带的共同特点,可以说,强辐射带主要源于该波段的二声子组合辐射。除少数例外,一般辐射陶瓷的辐射带集中在大于5m的二声子、三声子区。因此,对于红外辐射陶瓷而言,15m波段的辐射主要来自于自由载流子的带内跃迁或电子从杂质能级到导带的直接跃迁,大于5m波段的辐射主要归于二声子组合辐射。刘维良、骆素铭对常温陶瓷红外辐射做了研究,测试的陶瓷样品红外辐射率约,对不同表面质量的远红外陶瓷釉面也进行了测试,辐射率约,并从陶瓷断口SEM照片中得出远红外陶瓷粉在釉中添加量为10wt%时的辐射性能、釉面质量、颜色和成本较佳,其

8、辐射率达到了,其他性能均达到国家日用瓷标准要求。崔万秋、吴春芸对低温远红外陶瓷块状样品进行了测试,红外辐射率为。李红涛、刘建学研究发现,常温远红外陶瓷辐射率一般可达,国外Enecoat釉涂料最高辐射率可达。众多研究均表明,陶瓷材料或釉面本身具有很高的红外辐射率,是其替代传统铝制散热器的一大重要参数。陶瓷材料的分类与应用是相当广泛,分为普通材料和特种材料。普通材料采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。而

9、特种材料采用高纯度人工合成的原料,利用精密控制工艺成形烧结制成,一般具有某些特殊性能,以适应各种需要。根据其主要成分,有氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、金属陶瓷等;特种陶瓷具有特殊的力学、光、声、电、磁、热等性能。根据用途不同,特种陶瓷材料可分为结构陶瓷、工具陶瓷、功能陶瓷。陶瓷材料中已崛起了精细陶瓷,它以抗高温、超强度、多功能等优良性能在新材料世界独领风骚。精细陶瓷是指以精制的高纯度人工合成的无机化合物为原料,采用精密控制工艺烧结的高性能陶瓷,因此又称先进陶瓷或新型陶瓷。精细陶瓷有许多种,它们大致可分成三类。一是结构陶瓷,这种陶瓷主要用于制作结构零件。机械工业中的一些密封件、轴承、刀具、

10、球阀、缸套等都是频繁经受摩擦而易磨损的零件,用金属和合金制造有时也是使用不了多久就会损坏,而先进的结构陶瓷零件就能经受住这种磨难。二是电子陶瓷,指用来生产电子元器件和电子系统结构零部件的功能性陶瓷。这些陶瓷除了具有高硬度等力学性能外,对周围环境的变化能无动于衷,即具有极好的稳定性,这对电子元件是很重要的性能,另外就是能耐高温。三是生物陶瓷,生物陶瓷是用于制造人体骨骼一肌肉系统,以修复或替换人体器官或组织的一种陶瓷材料。精细陶瓷是新型材料特别值中得注意的一种,它有广阔的发展前途。这种具有优良性能的精细陶瓷,有可能在很大的范围内代替钢铁以及其他金属而得到广泛应用,达到节约能源、提高效率、降低成本的

11、目的;精细陶瓷和高分子合成材料相结合.可以使交通运输工具轻量化、小型化和高效化。精陶材料将成为名副其实的耐高温的高强度材料,从而可用作包括飞机发动机在内的各种热机材料、燃料电池发电部件材料、核聚变反应堆护壁材料、无公害的外燃式发动机材料等。精细陶瓷与高性能分子材料、新金属材料、复合材料并列为四大新材料。有些科学家预言.由于精细陶瓷的出现,人类将从钢铁时代重新进入陶瓷时代。简介陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它具有高熔点、高硬度、高耐磨性、耐氧化等优点。可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。编辑本段分类陶瓷材料分为普通陶

12、瓷材料和特种陶瓷材料两大类。普通陶瓷材料采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。特种陶瓷材料采用高纯度人工合成的原料,利用精密控制工艺成形烧结制成,一般具有某些特殊性能,以适应各种需要。根据其主要成分,有氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、金属陶瓷等;特种陶瓷具有特殊的力学、光、声、电、磁、热等性能。本节主要介绍特种陶瓷。编辑本段性能特点力学性能陶(来自:写论文网:陶瓷隔热材料)瓷材料是工程材料中刚度最

13、好、硬度最高的材料,其硬度大多在1500HV以上。陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧性很差。热性能陶瓷材料一般具有高的熔点,且在高温下具有极好的化学稳定性;陶瓷的导热性低于金属材料,陶瓷还是良好的隔热材料。同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性。电性能大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压的绝缘器件。铁电陶瓷具有较高的介电常数,可用于制作电容器,铁电陶瓷在外电场的作用下,还能改变形状,将电能转换为机械能,可用作扩音机、电唱机、超声波仪、声纳、医疗用声谱仪等。少数陶瓷还具有半导体的特性,可作整流器。化学性能陶瓷材料在高温下不易氧化,并对

14、酸、碱、盐具有良好的抗腐蚀能力。光学性能陶瓷材料还有独特的光学性能,可用作固体激光器材料、光导纤维材料、光储存器等,透明陶瓷可用于高压钠灯管等。磁性陶瓷在录音磁带、唱片、变压器铁芯、大型计算机记忆元件方面的应用有着广泛的前途。编辑本段常用特种陶瓷材料根据用途不同,特种陶瓷材料可分为结构陶瓷、工具陶瓷、功能陶瓷。1结构陶瓷氧化铝陶瓷主要组成物为Al2O3,一般含量大于45%。氧化铝陶瓷具有各种优良的性能。耐高温,一般可要1600长期使用,耐腐蚀,高强度,其强度为普通陶瓷的23倍,高者可达56倍。其缺点是脆性大,不能受受突然的环境温度变化。用途极为广泛,可用作坩埚、发动机火花塞、高温耐火材料、热电

15、偶套管、密封环等,也可作刀具和模具。氮化硅陶瓷主要组成物是Si3N4,这是一种高温强度高、高硬度、耐磨、耐腐蚀并能自润滑的高温陶瓷,线膨胀系数在各种陶瓷中最小,使用温度高达1400,具有极好的耐腐蚀性,除氢氟酸外,能耐其它各种酸的腐蚀,并能耐碱、各种金属的腐蚀,并具有优良的电绝缘性和耐辐射性。可用作高温轴承、在腐蚀介质中使用的密封环、热电偶套管、也可用作金属切削刀具。碳化硅陶瓷主要组成物是SiC,这是一种高强度、高硬度的耐高温陶瓷,在12001400使用仍能保持高的抗弯强度,是目前高温强度最高的陶瓷,碳化硅陶瓷还具有良好的导热性、抗氧化性、导电性和高的冲击韧度。是良好的高温结构材料,可用于火箭尾喷管喷嘴、热电偶套管、炉管等高温下工作的部件;利用它的导热性可制作高温下的热交换器材料;利用它的高硬度和耐磨性制作砂轮、磨料等。六方氮化硼陶瓷主要成分为BN,晶体结构为六方晶系,六方氮化硼的结构和性能与石墨相似,故有“白石墨”之称,硬度较低,可以进行切削加工具有自润滑性,可制成自润滑高温轴承、玻璃成形模具等。2工具陶瓷硬质合金主要成分为碳化物和粘结剂,碳化物主要有WC、TiC、TaC、NbC、VC等,粘结剂主要为钴。硬质合金与工具钢相比,硬度高,热硬性好,用作刀具时,切削速度比高速钢提高47倍,寿命提高58倍,其缺点是硬度太高、性脆,

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号