锂电正极材料十强

上传人:bin****86 文档编号:60375874 上传时间:2018-11-15 格式:DOCX 页数:15 大小:24.59KB
返回 下载 相关 举报
锂电正极材料十强_第1页
第1页 / 共15页
锂电正极材料十强_第2页
第2页 / 共15页
锂电正极材料十强_第3页
第3页 / 共15页
锂电正极材料十强_第4页
第4页 / 共15页
锂电正极材料十强_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《锂电正极材料十强》由会员分享,可在线阅读,更多相关《锂电正极材料十强(15页珍藏版)》请在金锄头文库上搜索。

1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划锂电正极材料十强锂电池几种正极材料的优缺点锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40左右,正极

2、材料价格的降低直接决定着锂离子电池价格的降低。对锂离子动力电池尤其如此。比如一块手机用的小型锂离子电池大约只需要5克左右的正极材料,而驱动一辆公共汽车用的锂离子动力电池可能需要高达500千克的正极材料。衡量锂离子电池正极材料的好坏,大致可以从以下几个方面进行评估:正极材料应有较高的氧化还原电位,从而使电池有较高的输出电压;锂离子能够在正极材料中大量的可逆地嵌入和脱嵌,以使电池有高的容量;在锂离子嵌入/脱嵌过程中,正极材料的结构应尽可能不发生变化或小发生变化,以保证电池良好的循环性能;正极的氧化还原电位在锂离子的嵌入/脱嵌过程中变化应尽可能小,使电池的电压不会发生显著变化,以保证电池平稳地充电和

3、放电;正极材料应有较高的电导率,能使电池大电流地充电和放电;正极不与电解质等发生化学反应;锂离子在电极材料中应有较大的扩散系数,便于电池快速充电和放电;价格便宜,对环境无污染。锂离子电池正极材料一般都是锂的氧化物。研究得比较多的有LiCoO2,LiNiO2,LiMn2O4,LiFePO4和钒的氧化物等。导电聚合物正极材料也引起了人们的极大兴趣。1、LiCoO2在目前商业化的锂离子电池中基本上选用层状结构的LiCoO2作为正极材料。其理论容量为274mAh/g,实际容量为140mAh/g左右,也有报道实际容量已达155mAh/g。该正极材料的主要优点为:工作电压较高、充放电电压平稳,适合大电流充

4、放电,比能量高、循环性能好,电导率高,生产工艺简单、容易制备等。主要缺点为:价格昂贵,抗过充电性较差,循环性能有待进一步提高。2、LiNiO2用于锂离子电池正极材料的LiNiO2具有与LiCoO2类似的层状结构。其理论容量为274mAh/g,实际容量已达190mAh/g210mAh/g。工作电压范围为。该正极材料的主要优点为:自放电率低,无污染,与多种电解质有着良好的相容性,与LiCoO2相比价格便宜等。但LiNiO2具有致命的缺点:LiNiO2的制备条件非常苛刻,这给LiNiO2的商业化生产带来相当大的困难;LiNiO2的热稳定性差,在同等条件下与LiCoO2和LiMn2O4正极材料相比,L

5、iNiO2的热分解温度最低,且放热量最多,这对电池带来很大的安全隐患;LiNiO2在充放电过程中容易发生结构变化,使电池的循环性能变差。这些缺点使得LiNiO2作为锂离子电池的正极材料还有一段相当的路要走。3、LiMn2O4用于锂离子电池正极材料的LiMn2O4具有尖晶石结构。其理论容量为148mAh/g,实际容量为90120mAh/g。工作电压范围为34V。该正极材料的主要优点为:锰资源丰富、价格便宜,安全性高,比较容易制备。缺点是理论容量不高;材料在电解质中会缓慢溶解,即与电解质的相容性不太好;在深度充放电的过程中,材料容易发生晶格崎变,造成电池容量迅速衰减,特别是在较高温度下使用时更是如

6、此。为了克服以上缺点,近年新发展起来了一种层状结构的三价锰氧化物LiMnO2。该正极材料的理论容量为286mAh/g,实际容量为已达200mAh/g左右。工作电压范围为3。虽然与尖晶石结构的LiMn2O4相比,LiMnO2在理论容量和实际容量两个方面都有较大幅度的提高,但仍然存在充放电过程中结构不稳定性问题。在充放电过程中晶体结构在层状结构与尖晶石结构之间反复变化,从而引起电极体积的反复膨胀和收缩,导致电池循环性能变坏。而且LiMnO2也存在较高工作温度下的溶解问题。解决这些问题的办法是对LiMnO2进行掺杂和表面修饰。目前已经取得可喜进展。4、LiFePO4该材料具有橄榄石晶体结构,是近年来

7、研究的热门锂离子电池正极材料之一。其理论容量为170mAh/g,在没有掺杂改性时其实际容量已高达110mAh/g。通过对LiFePO4进行表面修饰,其实际容量可高达165mAh/g,已经非常接近理论容量。工作电压范围为左右。与以上介绍的正极材料相比,LiFePO4具有高稳定性、更安全可*、更环保并且价格低廉。LiFePO4的主要缺点是理论容量不高,室温电导率低。基于以上原因,LiFePO4在大型锂离子电池方面有非常好的应用前景。但要在整个锂离子电池领域显示出强大的市场竞争力,LiFePO4却面临以下不利因素:来自LiMn2O4、LiMnO2、LiNiMO2正极材料的低成本竞争;在不同的应用领域

8、人们可能会优先选择更适合的特定电池材料;LiFePO4的电池容量不高;在高技术领域人们更关注的可能不是成本而是性能,如应用于手机与笔记本电脑;LiFePO4急需提高其在1C速度下深度放电时的导电能力,以此提高其比容量。在安全性方面,LiCoO2代表着目前工业界的安全标准,而且LiNiO2的安全性也已经有了大幅度的提高,只有LiFePO4表现出更高的安全性能,尤其是在电动汽车等方面的应用,才能保证其在安全方面的充分竞争优势。下表对不同锂离子电池正极材料的性能进行了比较。几种材料所产生的电池性能对比如下尽管从理论上能够用作锂离子电池正极材料种类很多,但目前在商业化生产的锂离子电池中最广泛使用的正极

9、材料仍然是LiCoO2。层状结构的LiNiO2虽然比LiCoO2具有更高的比容量,但由于它的热分解反应导致的结构变化和安全性问题,使得直接应用LiNiO2作为正极材料还有相当的距离。但用Co部分取代Ni获得安全性较高的LiNi1-xCoxO2来作为正极材料可能是将来一个重要的发展方向。尖晶石结构的LiMn2O4和层状结构的LiMnO2由于原材料资源丰富、价格优势明显、安全性能高而被认为是极具市场竞争力的正极候选材料之一。但其存在的充放电过程中结构不稳定性问题将是将来的重要研究课题。具有橄榄石结构的LiFePO4目前的实际放电容量已达理论容量的95左右,并且具有价格便宜、安全性高、结构稳定、无环

10、境污染等优点,被认为是大型锂离子电池中极有理想的正极材料。四种主要的锂电池正极材料LiCoO2锂离子从LiCoO2中可逆脱嵌量最多为单元.Li1-xCoO2在x=附近发生可逆相变,从三方对称性转变为单斜对称性。该转变是由于锂离子在离散的晶体位置发生有序化而产生的,并伴随晶体常数的细微变化。但是,也有人在x=附近没有观察到这种可逆相变。当x时,Li1-xCoO2在有机溶剂中不稳定,会发生释氧反应;同时CoO2不稳定,容量发生衰减,并伴随钴的损失。该损失是由于钴从其所在的平面迁移到锂所在的平面,导致结构不稳定,使钴离子通过锂离子所在的平面迁移到电解质中。因此x的范围为0x,理论容量为156mAh/

11、g。在此范围内电压表现为4V左右的平台。当LiCoO2进行过充电时,会生成新的结构当校子处于纳米范围时,经过多次循环将产生阳离子无序,部分O3相转变为立方尖晶石相结构,导致容量衰减。粒子小时,由于锂离子的扩散路径短,形成的SEI膜较粒子大的稳定,因此循环性能好。例如,70nm的粒子好于300nm的粒子。粒子大小对自放电也具有明显影响。例如粒子小,自放电速率快。粒径分布窄,粒子的球形性越好,电化学性能越佳。最佳粒子大小取决于电池的要求。尽管LiCoO2与其它正极材料相比,循环性能比较优越,但是仍会发生衰减,对于长寿命需求的空间探索而言,还有待于进一步提高循环性能。同时。研究过程发现,LiCoO2

12、经过长时期的循环后,从层状结构转变为立方尖晶石结构,特别是位于表面的粒子;另外,降低氧化钴锂的成本,提高在较高温度(65)下的循环性能和增加可逆容量也是目前研究的方向之一。采用的方法主要有掺杂和包覆。作为锂离子电池正极材料的锂钴氧化物能够大电流放电,并且放电电压高,放电平稳,循环寿命长。.因此成为最早用于商品化的锉离子蓄电池的正极材料,亦是目前广泛应用于小型便携式电子设备(移动电话、笔记本电脑、小型摄像机等)的正极材料。LiCoO2具有a-NaFeO2型二维层状结构,适宜于锂离子在层间的嵌人和脱出,理论容量为274mAh/g。在实际应用中,该材料电化学性能优异,热稳定性好,且初次循环不可逆容量

13、小。实际可逆容量约为120150mAh/g,即可逆嵌人/脱出晶格的锂离子摩尔百分数接近55%。在过充电条件下,由于锂含量的减少和金属离子氧化水平的升高,降低了材料的稳定性。另外由于Co原料的稀有,使得LiCoO2的成本较高。LiCoO2生产工艺相对较为简单,其传统的合成方法主要有高温固相合成法和低温固相合成法。高沮固相合成法通常以Li2CO3和CoCO3为原料,按Li/Co的摩尔比为1:1配制,在700900下,空气氛围中灼烧而成。也有采用复合成型反应生成LiCoO2前驱物,然后在350450下进行预热处理,再在空气中于700850下加热合成,所得产品的放电容量可达150mAh/g。唐致远等以

14、计量比的钴化合物、锂化合物为合成原料在有机溶剂乙醇或丙酮的作用下研磨混合均匀,先在450的温度下处理6h.,待冷却后取出研磨,然后再在610MPa压力下压成块状,最后在900的温度下合成1236h而制得。日本的川内晶介等用Co3O4和Li2CO3做原料,按化学计量配合在650灼烧10h制的温定的活性物质。章福平等按计量将分析纯LiNO3和Co(NO3)26H2O混匀,加适量酒石酸,用氨水调pH=68,900加热27h得坚硬灰黑色LiCoO2。夏熙等将物质的量比为1:1的Co(Ac)24H2O和LiOHH2O研磨反应,在烘箱中4050微热,将固体中间产物在真空干燥箱于MPa.、100下干燥6小时

15、,置于马弗炉中于400700下热处理16h,即可得到不同烧结温度下的超微细粉末。在合成之前进行预处理能使晶体生长的更加完美,获得高结晶度层状结构的LiCoO2,提高电池的循环寿命。烧结温度对LiCoO2晶相结构、晶化程度、结构致密性及稳定性有显著影响。在800和900条件下合成的LiCoO2都有电化学活性,首次充电容量均大于130mAh/g。低温固相合成法是将混合好的Li2CO3和CoCO3在空气中匀速升沮至400,保温数日,生成单相产物。此法合成的LiCoO2具有较为理想的层状中间体和尖晶石型中间体结构。Yazami等介绍了另一种低温合成方法。在强力搅拌下,将碳酸钴悬浮液加到醋酸锂溶液中,然

16、后在550下处理至少2h,所得材料呈单分散颗粒状,比表面积大,结晶度好且具有化学计量比的组成。Larcher等研究了低温下用阳离子交换法制备的活性LiCoO2的电化学行为,并对反应机理和不同工艺条件对材料性质的影响做了讨论。凝胶燃烧法合成LiCoO2相对于大多固相合成法具有反应温度低,产品粒度小,粉体结构单一等优点。以LiNO3和Co(NO3)26H2O为原料,柠檬酸为燃料,采用凝胶低温燃烧技术合成了LiCO2超细粉体。柠檬酸硝酸盐凝胶在350400之间发生燃烧反应,得到黑色硫松粉体。X射线衍射分析表明适当提高柠檬酸在凝胶中的含量,燃烧后得到的LiCoO2粉体晶粒尺寸显著减小。溶胶凝胶法制备的氧化钴锂无论是可逆容量还是循环性能,得到

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号