超薄硬脆材料加工技术

上传人:bin****86 文档编号:60318171 上传时间:2018-11-15 格式:DOCX 页数:15 大小:24.50KB
返回 下载 相关 举报
超薄硬脆材料加工技术_第1页
第1页 / 共15页
超薄硬脆材料加工技术_第2页
第2页 / 共15页
超薄硬脆材料加工技术_第3页
第3页 / 共15页
超薄硬脆材料加工技术_第4页
第4页 / 共15页
超薄硬脆材料加工技术_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《超薄硬脆材料加工技术》由会员分享,可在线阅读,更多相关《超薄硬脆材料加工技术(15页珍藏版)》请在金锄头文库上搜索。

1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划超薄硬脆材料加工技术桂林电子科技大学信息科技学院现代材料加工技术论文题目:现代材料加工技术专业:材料成型及控制工程学号:姓名:系别:机电工程系现代材料加工技术王伟杰摘要:激光加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等。用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激光能适应任何材料的加工制造,尤其在一些有特殊精度和要求、特别场合和特种材料的加工制造方面起着无可替代的作用。关键词:加工原理

2、、发展前景、强化处理、微细加工、发展前景。Abstract:Laserprocessingreferstotheuseofalaserbeamprojectedontothesurfaceofthematerialproducedbythermaleffecttocompletetheprocess,includinglaserwelding,lasercutting,surfacemodification,lasermarking,laserdrillingandmicro-processing.Usingalaserbeamonavarietyofmaterialsprocessing,s

3、uchasdrilling,cutting,dicing,welding,heattreatmentandsoon.Lasercanadapttoanymaterialmanufacturing,especiallyinsomeofthespecialrequirementsofprecisionand,inparticular,specialoccasionsandmaterialmanufacturingplaysanirreplaceableroleKeywords:processingprinciple,theprospectsforthedevelopmentandstrengthe

4、ningtreatment,micro-machining激光加工回顾20世纪对人类社会产生重大影响的科技发明,激光器的诞生无疑是一个极为耀眼的亮点,激光以其无与伦比的技术优势正继微电子技术之后,推动人类科学技术进入新的发展阶段。发达国家为了在全球竞争环境中占据世界信息技术的制高点,赢得主动权,纷纷加紧实施激光产业发展计划,如美国的“激光核聚变计划”,德国的“激光XX行动计划”,英国实施“阿维尔计划”,日本启动“激光研究五年计划”等。这些项目的实施,有效推动了全球激光产业进入高速发展阶段。一激光加工的原理及其特点1.激光加工的原理激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材

5、料以及改变物体表面性能。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。2.激光加工的特点激光具有的宝贵特性决定了激光在加工领域存在的优势:由于它是无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性、及高熔点的材料。激光加工过程中无“刀具”磨损,无“切削力”作用于工件。激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射

6、部位没有影响或影响极小。因此,其热影响区小,工件热变形小,后续加工量小。它可以通过透明介质对密闭容器内的工件进行各种加工。由于激光束易于导向、聚集实现作各方向变换,极易与数控系统配合,对复杂工件进行加工,因此是一种极为灵活的加工方法。使用激光加工,生产效率高,质量可靠,经济效益好。例如:美国通用电器公司采用板条激光器加工航空发动机上的异形槽,不到4H即可高质量完成,而原来采用电火花加工则需要9H以上。仅此一项,每台发动机的造价可省5万美元。激光切割钢件工效可提高8-20倍,材料可节省15-30%,大幅度降低了生产成本,并且加工精度高,产品质量稳定可靠。虽然激光加工拥有许多优点,但不足之处也是很

7、明显的。二激光技术用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激光加工有许多优点:激光功率密度大,工件吸收激光后温度迅速升高而熔化或汽化,即使熔点高、硬度大和质脆的材料(如陶瓷、金刚石等)也可用激光加工;激光头与工件不接触,不存在加工工具磨损问题;工件不受应力,不易污染;可以对运动的工件或密封在玻璃壳内的材料加工;激光束的发散角可小于1毫弧,光斑直径可小到微米量级,作用时间可以短到纳秒和皮秒,同时,大功率激光器的连续输出功率又可达千瓦至十千瓦量级,因而激光既适于精密微细加工,又适于大型材料加工;激光束容易控制,易于与精密机械、精密测量技术和电子计算机相结合,实现加工的高度自

8、动化和达到很高的加工精度;在恶劣环境或其他人难以接近的地方,可用机器人进行激光加工。激光打孔采用脉冲激光器可进行打孔,脉冲宽度为1毫秒,特别适于打微孔和异形孔,孔径约为1毫米。激光打孔已广泛用于钟表和仪表的宝石轴承、金刚石拉丝模、化纤喷丝头等工件的加工。激光切割、划片与刻字在造船、汽车制造等工业中,常使用百瓦至万瓦级的连续CO2激光器对大工件进行切割,既能保证精确的空间曲线形状,又有较高的加工效率。对小工件的切割常用中、小功率固体激光器或CO2激光器。在微电子学中,常用激光切划硅片或切窄缝,速度快、热影响区小。用激光可对流水线上的工件刻字或打标记,并不影响流水线的速度,刻划出的字符可永久保持。

9、激光微调采用中、小功率激光器除去电子元器件上的部分材料,以达到改变电参数的目的。激光微调精度高、速度快,适于大规模生产。利用类似原理可以修复有缺陷的集成电路的掩模,修补集成电路存储器以提高成品率,还可以对陀螺进行精确的动平衡调节(图3)。激光焊接激光焊接强度高、热变形小、密封性好,可以焊接尺寸和性质悬殊,以及熔点很高(如陶瓷)和易氧化的材料。激光焊接的心脏起搏器,其密封性好、寿命长,而且体积小。激光热处理用激光照射材料,选择适当的波长和控制照射时间、功率密度,可使材料表面熔化和再结晶,达到淬火或退火的目的。激光热处理的优点是可以控制热处理的深度,可以选择和控制热处理部位,工件变形小,可处理形状

10、复杂的零件和部件,可对盲孔和深孔的内壁进行处理。例如,气缸活塞经激光热处理后可延长寿命;用激光热处理可恢复离子轰击所引起损伤的硅材料。激光加工的应用范围还在不断扩大,如用激光制造大规模集成电路,不用抗蚀剂,工序简单,并能进行微米以下图案的高精度蚀刻加工,从而大大增加集成度。此外,激光蒸发、激光区域熔化和激光沉积等新工艺也在发展中。强化处理在材料加工业中,切削加工是基本而又常用的精密加工手段,在机械、电机、电子等各种产业部分中都起着重要的作用,决定切削加工效率的因素很多如机床、刀具、工件等,其中刀具是最活跃的因素。而刀具耐用度的高低、刀具消耗和加工成本的多少、加工精度和表面质量的优劣等等,在很大

11、程度上取决于刀具材料的机械性能和加工性能,因此人们不断地研究开发新的刀具材料。但新材料的开发速度常常与现代切削加工生产要求存在一定的差距,如在高速切削3001000m/min切削钢、90200m/min切削钛合金等要达到这样高的切削速度,就要发展具有更加优异的高温力学性能、高化学稳定性和热稳定性及高温热抗振性的刀具材料,加速刀具材料的研究与开发,合理选用刀具材料是推动高速切削技术广针对难加工材料和加工方法的总结难加工材料的种类很多,从金属到非金属范围很广。从切削加工角度,初步可分为如下几类:1.高强韧类难加工材料这类材料主要包括超高强度钢、钛合金、高温合金等,其特点主要包括塑性高、韧性好、强度

12、高、强化系数高、导热系数低。在切削加工中,由于高强韧类难加工材料的强度高,切削时的切削力大,不但刀具易磨损,而且切屑不易处理。同时,这类材料的导热系数很低,造成切削过程中切削温度高,刀具易产生磨料磨损、粘结磨损、扩散磨损和氧化磨损。此外,切削加工时的切削表面和已加工表面硬化现象严重。对钛、镍、钴及其他合金,这类材料化学活性大、亲和性强,切削加工时易黏结在刀具上,与刀具材料产生化学、物理作用,元素相互扩散。钛合金广泛应用到汽车、化工、体育、医学、建筑、矿山、航空航天和军事装备中。超高强度钢广泛应用到火箭发动机壳体、飞机起落架、防弹钢板等性能有特殊要求的领域,而且其使用范围正在不断地扩大到建筑、机

13、械制造、车辆和其它军用及民用装备。高温合金广泛应用到航空航天、工业燃气轮机、汽车、化工设备、船舶、原子能等。2.高硬脆类难加工材料这类材料主要包括光学玻璃、硅片、陶瓷等。特点主要在于硬度高、脆性大,其加工机制与高强韧类金属材料有显著差别。这些材料由于耐磨性很好,切削时起磨料作用,故刀具主要承受磨料磨损,高速切削时也同时伴随着物理、化学磨损。此外,被加工表面易产生裂纹以及边缘破损.这些缺陷将显著降低零件的强度及使用寿命。主要应用于主要应用于照相器材、仪器仪表、光学仪器、医疗仪器,教学仪器、幻灯机、投影仪、紫外分析仪、金融机具、机场灯具,军工,科研院校、公安等。硅片到应用计算机领域、和太阳能等。陶

14、瓷广泛应用到电子、信息、航天、能源、军事和生物医学等领域。3.兼具高强韧和高硬脆类难加工材料这类材料主要包括金属基复合材料、陶瓷基复合材料等。其特点主要包括具有高比强度、比模量,良好的导热性、导电性、耐磨性、高温性能,低的线膨胀系数,高的尺寸稳定性等。在复合材料的高效机械加工中会出现一些常规材料所没有的问题,如增强相硬且脆(或坚韧),使刀具磨损大;某些基体材料韧且不导热,加工时产生的热量不易散发,钻刀具;层压复合材料在加工时极易分层等。根据这些特点,加工时应采取相应的措施,如选择合适的刀具和合理的加工余量,制定专门的加工工艺,采取适当的加工润滑和冷却措施。并设计专用的加工夹具以保证加工质量。对

15、以上难加工材料还是主要用机械加工来实现,下面详细介绍加工方法,实现难加工材料的有效加工,1.关键在于优选刀具材料:高性能高速钢、新型硬质合金、涂层刀具、陶瓷刀具、CBN刀具和金刚石刀具;2.选择合适的刀具几何参数;3.采用适当的冷却润滑条件;4.采用优化的加工参数。高速钢Highspeedsteel:高速钢可以锻造,淬火前可以切削加工,强度高,所以广泛用于齿轮刀具、螺纹刀具、拉刀等复杂刀具。高性能高速钢:增加V、Co、Al、稀土等元素,提高高速钢的性能。高速钢M42:是当前航空航天生产中应用较广泛的高性能高速钢,Al高速钢501:在加工高强度钢等难加工材料时也具有良好的性能。粉末冶金高速钢:粉末冶金高速钢无碳化物偏析,晶粒粉细小均匀,杂质含量少,抗弯强度比冶炼高速钢提高2倍以上,在600时的高温硬度高出23HRC,刀具寿命提高2倍。进口牌号ASP2060、ASP2080,国产牌号M42-P硬质合金Cementedcarbide:当前硬质合金刀具材料的进展主要体现在以下几个方面涂层技术:涂层技术分为化学气相涂层和物理气相涂层。涂层材料:传统:C、N或O的二元化合物,如TiC、TiN、Al2O3等。新型多元化合物:TiCN、TiAlN、TiCrN、AlCrN、TiAlSiN氮化碳、氮化物等,软涂层刀具:MoS2、WS

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号