压电陶瓷材料表

上传人:bin****86 文档编号:59857025 上传时间:2018-11-12 格式:DOCX 页数:16 大小:25.44KB
返回 下载 相关 举报
压电陶瓷材料表_第1页
第1页 / 共16页
压电陶瓷材料表_第2页
第2页 / 共16页
压电陶瓷材料表_第3页
第3页 / 共16页
压电陶瓷材料表_第4页
第4页 / 共16页
压电陶瓷材料表_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《压电陶瓷材料表》由会员分享,可在线阅读,更多相关《压电陶瓷材料表(16页珍藏版)》请在金锄头文库上搜索。

1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划压电陶瓷材料表压电陶瓷材料性能注:(1)表中数据除、Tc外均为极化后十天测量值;(2)表中值偏差为%;S值偏差为10%;N值偏差为5%;(3)表中所列为材料性能,元件性能可按CB1194-88计算。压电陶瓷材料及应用一、概述电介质电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会。美国MIT建

2、立了以Hippel教授为首的绝缘研究室。苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大

3、等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。80年代初中国电工技术学会又建立了工程电介质专业委员会。近年来,随着电子技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。主要有:、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。、化学功能陶瓷如各种传感器、化学泵等。、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。功能陶瓷作为信息时代的支柱材料,以其独特的力、热、电、磁、光以及声学等功能性质,在各类信息的检测、转换、处理和存储中具有

4、广泛的应用,是一类重要的、国际竞争极为激烈的高技术材料。压电陶瓷作为重要的功能材料在电子材料领域占据相当大的比重。压电材料的分类具有压电效应的材料称为压电材料。自1880年JacquesCurie和PierreCurie发现压电效应以来,压电材料发展十分迅速。利用压电材料构成的压电器件不仅广泛用于电子学的各个领域,而且已遍及日常生活。例如,农村中家家户户屋檐下挂的小喇叭-压电陶瓷扬声器;医院里检查心脏、肝部的超声诊断仪上的探头-压电超声换能器;电子仪器内的各种压电滤波器;石油、化工用各种压电测压器、压电流量仪等等。压电材料主要有压电晶体、陶瓷、压电薄膜、压电聚合物及复合压电材料等。图压电材料的

5、分类压电单晶体是指按晶体空间点阵长程有序生长而成的晶体。这种晶体结构无对称中心,因此具有压电性。如水晶、镓酸锂等。压电陶瓷是经过直流高电压极化处理过后具有压电性的铁电陶瓷。这些构成铁电陶瓷的晶粒的结构一般是不具有对称中心的,存在着与其它晶轴不同的极化轴,而且它们的原胞正负电荷重心不重合,即有固有电矩自发极化存在。然而,铁电陶瓷是由许多细小晶粒聚集在一起构成的多晶体。这些小晶粒在陶瓷烧结后,通常是无规则地排列的。而且,各晶粒间自发极化方向杂乱,总的压电效应会互相抵消,因此在宏观上往往不呈现压电性能。在外电场作用下,铁电陶瓷的自发极化强度可以发生转向,在外电场去除后还能保持着一定值剩余极化,如图所

6、示,其中Ec为矫顽场,Psat为饱和极化强度。利用铁电材料晶体结构中的这种特性,可以对烧成后的铁电陶瓷在一定的温度、时间条件下,用强直流电场处理,使之在沿电场方向显示出一定的净极化强度。这一过程称为人工极化。经过极化处理后,烧结的铁电陶瓷将由各向同性变成各向异性,并因此具有压电效应。由此可见,陶瓷的压电效应来源于材料本身的铁电性。因此,所有的压电陶瓷也都应是铁电陶瓷。图铁电材料的电滞回线相比较而言,压电陶瓷压电性强、介电常数高、可以加工成任意形状,但机械品质因子较低、电损耗较大、稳定性差,因而适合于大功率换能器和宽带滤波器等应用,但对高频、高稳定应用不理想。石英等压电单晶压电性弱,介电常数很低

7、,受切割限制存在尺寸局限,但稳定性很高,机械品质因子高,多用来作标准品率控制的振子、高选择性的滤波器以及高频、高温超声换能器等。压电薄膜是一种独特的高分子传感材料,能相对于压力或拉伸力的变化输出电压信号,因此是一种理想的动态应变片,压电薄膜元件通常由四部分组成:金属电极、加强电压信号压膜、引线和屏蔽层。压电聚合物,如偏聚氟乙烯等,具有材质柔韧,低密度,低阻抗和高压电电压常数等优点,为世人瞩目且发展十分迅速,现在水声超声测量、压力传感、引燃引爆等方面获得应用。不足之处是压电应变常数偏低,使之作为有源发射换能器受到很大的限制。复合压电材料,是在有机聚合物基底材料中嵌入片状、棒状、杆状、或粉末状压电

8、材料构成的。至今已在水声、电声、超声、医学等领域得到广泛的应用。如它制成的水声换能器,不仅具有高的静水(来自:写论文网:压电陶瓷材料表)压响应速率,而且耐冲击,不易受损且可用于不同的深度。发展概况1942-1945年间发现钛酸钡具有异常高的介电常数,不久又发现它具有压电性,BaTiO3压电陶瓷的发现是压电材料的一个飞跃。这以前只有压电单晶材料,此后出现了压电多晶材料压电陶瓷,并获得广泛应用。1947年美国用BaTiO3陶瓷制造留声机用拾音器,日本比美国晚用两年。BaTiO3存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。1954年美国B贾菲等人发现了压电PbZrO3-PbTiO3固溶

9、体系统,这是一个划时代大事,使在BaTiO3时代不能制作的器件成为可能。此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。六十年代初,Smolensky等人对复合钙钛矿型化合物进行了系统的研究,提出可以用不同原子价的元素组合取代钙钛矿结构中的A-位和B-位离子,大大增加了钙钛矿型化合物的种类。如Pb(Mg1/3Nb2/3)O3(PMN)、Pb(Ni1/3Nb2/3)O3(PNN)、Pb(Sb1/3Nb2/3)O3(PSN)等,这些新的二元系压电陶瓷不仅各有特色,而且陶瓷的烧结温度低,工艺重复性好,对压电材料的发展起了积极作用。1965年,日本松下电气公司的发表了把Pb(Mg1/

10、3Nb2/3)O3作为第三组分加到PZT陶瓷中制成的三元系压电陶瓷,发现它具有良好的压电性能。1969年,我国压电与声光技术研究所研制成功把Pb(Mn1/3Sb2/3)O3作为第三组分加到PZT中的三元系压电陶瓷,性能比PZT和PCM优越。经过10多年的深入研究和广泛应用,这种材料成为我国自成体系的、具有独特性能的、工艺稳定的三元系压电陶瓷,起名PMS。PMS压电陶瓷和用它作换能器的压电晶体速率陀螺均先后获国家科委发明奖。80年代,为了既能满足人类日益增长的物质文化生活需要,又能减少对环境的污染,保护人类赖以生存的生态环境,简化材料制备工艺,开始了非铅基铁电压电陶瓷的研究工作。非铅基铁电压电陶

11、瓷主要是以铌酸盐和钛酸盐为主的化合物。虽然这类材料的目前压电性能还不如锆钛酸铅系,但是非铅基铁电压电陶瓷的研究开发已成为压电陶瓷材料领域的研究前沿之一。二、压电陶瓷的压电机理与性能参数压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。极化的微观机理在电场的作用下,电介质内部沿电场方向感应出偶极矩,即在电介质表面出现束缚电荷的物理现象。极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间互相吸引力的暂时平衡统一的状态。极化机理主要有三种。电子位移极化在外电场作用下,构成原子外围的电子云相

12、对于原子核发生位移,这种极化称为电子位移极化,其极化率称为电子位移极化率?e。湖南工学院学院:材料与化学工程专业:无机非金属材料工程学号:姓名:姜庭燕时间:XX年5月16日压电陶瓷材料PZT陶瓷一、压电陶瓷材料简介压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料。这是一种具有压电效应的材料。它在工业生产和日常生活中得到了广泛的应用。由压电陶瓷构成的超高精度、低能耗、控制简便的驱动器,在精密工程中起到了非常重要的作用。1、压电陶瓷材料的基本原理压电效应的原理是,如果对压电材料施加压力,它便会产生电位差,反之施加电压,则产生机械应力。如果压力是一种高频震动,则产生的就是高

13、频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号,这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。二、PZT压电陶瓷的发展压电陶瓷是一种能够将机械能和电能互相转换的信息功能陶瓷材料。当在某些各向异性的晶体材料上施加机械应力时,在晶体的某些表面上会有电

14、荷出现。这一效应称为正压电效应,晶体的这一性质,称为压电性。1880年,居里兄弟最早发现电气石具有压电效应,1881年,居里兄弟实验发现,在晶体上施加电压时,则晶体会产生几何形变。这一效应被称为逆压电效应,并给出石英相同的正逆压电常数。1894年沃伊特(Voigt)指出,仅无对称中心的20种点群的晶体才可能具有压电效应。石英是压电晶体的代表,它一直被广泛应用至今。利用石英的压电效应可制成振荡器和滤波器等频控元件。在第一次世界大战中,居罩的继承人朗之万,为了探测德国的潜水艇,用石英制成了水下超声探测器,从而揭开了压电效应应用史的光辉篇章。自发现压电性能以来,压电学己成为晶体物理学的一个重要分支。

15、直到1944年,人们对“压电陶瓷”这个术语仍不理解。大约在1940年以前,只知道有两类铁电体,一类是罗息盐与某些关系密切的酒石酸盐;一类是磷酸二氢钾和它的同晶型物。前者是一种在高温下具有压电性的晶体,在技术上具有使用价值,但是它有容易潮解的缺点;后者要在极低的温度(低于148)下才具有压电性,因此工程上应用价值不大。二次大战中,1942年到1945年期间,美国的韦纳等人、苏联的伍尔和戈德曼、日本的小川分别发现钛酸钡(BaTiO3)具有异常高的介电常数。此后不久,有人发现BaTi03具有压电性。BaTiO3陶瓷的发现是压电陶瓷材料的一个飞跃。在此以前,压电材料只是压电单晶材料。从此以后,压电材料有了两大类:压电单晶和压电陶瓷。1947年,美国Roberts在BaTiO3陶瓷上,施加高压进行极化处理,获得了压电陶瓷的压电性,同年,美国出现了用BaTi03陶瓷制造的留声机用拾音器。由于BaTiO3压电陶瓷材料和石英晶体、罗息盐压电单晶相比,具有制备容易,且可制成任意形状和任意极化方向的产品等优点,随后,日本积极开展利用BaTiO3压电陶瓷制作超声换能器、高频换能器、压力传感器、滤波器、谐振器等各种压电器件应用研究,这种研究一直进行到20世纪50年代中期。虽然如此,BaTiO3陶瓷也有缺点,即它的压电性比罗息盐弱,而且压电性随温度和时间变化又比石英晶体大

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号