(课件)第三章玻璃体

上传人:bin****86 文档编号:55254327 上传时间:2018-09-26 格式:PPT 页数:84 大小:824.60KB
返回 下载 相关 举报
(课件)第三章玻璃体_第1页
第1页 / 共84页
(课件)第三章玻璃体_第2页
第2页 / 共84页
(课件)第三章玻璃体_第3页
第3页 / 共84页
(课件)第三章玻璃体_第4页
第4页 / 共84页
(课件)第三章玻璃体_第5页
第5页 / 共84页
点击查看更多>>
资源描述

《(课件)第三章玻璃体》由会员分享,可在线阅读,更多相关《(课件)第三章玻璃体(84页珍藏版)》请在金锄头文库上搜索。

1、第三章玻璃体,第一节 玻璃的通性,一、各 向 同 性,二、 介稳性,四、 由熔融态向玻璃态转化时,物理、化学性质随温度变化的连续性,三、 凝固的渐变性和可逆性,一、各向同性 均质玻璃其各方向的性质如折射率、硬度、弹性模量、热膨胀系数、导热系数等都相同(非均质玻璃中存在应力除外)。 玻璃的各向同性是其内部质点无序排列而呈现统计均质 结构的外在表现。 二、 介稳性 热力学高能状态,有析晶的趋势 动力学高粘度,析晶不可能,长期保 持介稳态。,由熔融态向玻璃态转变的过程是可逆的与渐变的,这与熔体的 结晶过程有明显区别。,三、 凝固的渐变性和可逆性,冷却速率会影响Tg大小,快冷时Tg较慢冷时高,K点在F

2、点前。Fulda测出NaCaSi玻璃:(a) 加热速度(/min) 0.5 1 5 9Tg() 468 479 493 499(b) 加热时与冷却时测定的Tg温度应一致(不考虑滞后)。 实际测定表明玻璃化转变并不是在一个确定的Tg点上,而 是有一个转变温度范围。结论:玻璃没有固定熔点,玻璃加热变为熔体过程也是渐变的。,补充平衡结构:和一定温度所要求的结构相一致。结构松弛: 熔体冷却到一定温度,结构相应调整,重新排列, 以达到该温度下的平衡结构,同时释放能量,该过程叫作玻璃结构调整的过程。,Tf 结构变化是瞬时的,能够适应T的变化,结构单元变化速率VT变化。 T0 T1 T2,Tf Tg 结构改

3、变发生滞后,结构调整不充分。实际结构可看成较高温度下的平衡结构,结构改变 速度VT T3 T4 T5,Tg 传统 玻璃熔体与玻璃体的转变是可逆的, 渐变的。非传统玻璃(无定形物质):TM PbSiO4 Na2SiO3众多科学家从:d、H、 S等热力学数据研究玻璃形成规律,结果都是失败的!热力学是研究反应、平衡的好工具,但不能对玻璃形成做出重要贡献!,三、形成玻璃的动力学手段 1、Tamman观点: 影响析晶因素:成核速率Iv和晶体生长速率u 需要适当的过冷度: 过冷度增大,熔体粘度增加,使质点移动困难,难于从熔体中扩散到晶核表面,不利于晶核长大;过冷度增大,熔体质点动能降低,有利于质点相互吸引

4、而聚结和吸附在晶核表面,有利于成核。,过冷度与成核速率Iv和晶体生长速率u必有一个极值。,Iv= P * D 其中:P临界核坯的生长速率D相邻原子的跃迁速率,D,P,Iv,T,速率,一方面: T 粘度 质点运动困难,难于扩散到晶核表面,不利于成核和长大。,另一方面: T 质点动能 质点间引力 容易聚集吸附在晶核表面,对成核有利。,结论,Iv呈极值变化,过冷度T = TMT,U=Bexp(-Ga/kT) * 1- Bexp(-Gv/kT) 其中: 项质点长程迁移的影响项与Gv有关,晶体态和玻璃态两项自由能差. Gv H T/Te,项,项,T,U,结论,U呈极值变化,速率,总析晶速率 1、过冷度太

5、小或过大,对成核和生长均不利。只有在一定过冷度下才能有最大的IV和u 。,2、IV和 u两曲线重叠区,称析晶区,在此区域内,IV和 u都有一个较大的数值,既有利成核,又有利生长。,3、两侧阴影区为亚稳区。左侧T 太小,不可能自发成核,右侧 T太大,温度太低,粘度太大,质点难以移动无法形成晶相。亚稳区为实际不能析晶区。,4、如果 IV和 u的极大值所处的温度范围很靠近,熔体就易析晶而不易形成玻璃。反之,就不易析晶而易形成玻璃。,1、过冷度太小或过大,对成核和生长均不利。只有在一定过冷度下才能有最大的IV和u 。,4、如果 IV和 u的极大值所处的温度范围很靠近,熔体就易析晶而不易形成玻璃。反之,

6、就不易析晶而易形成玻璃。,3、两侧阴影区为亚稳区。左侧T 太小,不可能自发成核,右侧 T太大,温度太低,粘度太大,质点难以移动无法形成晶相。亚稳区为实际不能析晶区。,2、IV和 u两曲线重叠区,称析晶区,在此区域内,IV和 u都有一个较大的数值,既有利成核,又有利生长。,熔体在TM温度附近若粘度很大,此时晶核产生与晶体的生长阻力均很大,因而易形成过冷液体而不易析晶。 IV和 u两曲线峰值大小及相对位置,都由系统本性所决定。近代研究证实,如果冷却速率足够快,则任何材料都可以形成玻璃。 从动力学角度研究 各类不同组成的熔体以多快的速率冷却才能避免产生可以探测到的晶体而形成玻璃,这是很有意义的。,2

7、、Uhlmann观点: 确定玻璃中可以检测到的晶体的最小体积(V /V106 ) 考虑熔体究竟需要多快的冷却速率才能防止此 结晶量的产生,从而获得检测上合格的玻璃,根据相变动力学理论,对均匀成核,在时间t内单位体积的V /V ,可用Johnson-Mehl-Avrami式来描述。,借助此式绘制给定体积分数的三T曲线,并可估计出避免生成106分数晶体所必 须的冷却速率。,三T即:Time-Temperature-Transformation 三T曲线的绘制:1、选择一个特定的结晶分数106;2、在一系列温度下计算成核速率IV 、生长速率u ;3、把计算所得IV 、u代入(21)式求出对应时间t

8、;4、以 MT 为纵坐标,冷却时间t为横坐标作出3T图。,只有三T曲线前端即鼻尖对应析出106体积分数的晶体的时间是最少的。为避免析出106分数的晶体所需的临界冷却速率可由下式近似求出,若(dT/dt)c大,则形成玻璃困难,反之则容易。,分析:1、谁较易析晶,谁易形成玻璃?2、为什么出现鼻尖形状?3、此图表示什么意义?,判别不同物质形成玻璃能力大小。,形成玻璃的临界冷却速率是随熔体组成而变化的。,P94 Tab3-6,(2) dT/dt越小,容易形成玻璃。 (3) Tg/TM接近“ 2/3”时,易形成玻璃,即三分之二规则。,(1) 熔点时的粘度高,易形成玻璃,析晶阻力较大,TM时的粘度是形成玻

9、璃 的主要标志。,结 论,由Tg与TM作图知,易生成玻璃的组成在直线的上方。 此规则反映形成玻璃所需冷却速率大小。,总结:,SiO2,四、玻璃形成的结晶化学条件1、键强(孙光汉理论),(1)单键强度335kj/mol(或80kcal/mol)的氧化物网络形成体。 (2)单键强度0.05 Kcal/mol 易形成玻璃; 单键强度/Tm.p0.05 Kcal/mol 不易形成玻璃。 可以说明:熔点低的氧化物易于形成玻璃,如,B2O3不易析晶!,(1)离子化合物如NaCl、CaCl2在熔融状态以正、负离子形式单独存在,流动性很大。由于离子键作用范围大,无方向性且有较高的配位数,组成晶格的几率较高,在

10、凝固点由库仑力迅速组成晶格,所以很难形成玻璃。,2、键型,(2)金属键物质在熔融时失去联系较弱的e后以正离子状态存在。价电子属于一定的能带,不固定在某一个局部,由于金属键无方向性和饱和性,原子相遇组成晶格的几率最大(CN=12),很难形成玻璃。 (3)纯粹共价键物质大部分为分子结构,在分子内部以共价键相联系,而分子之间是无方向性的范德华力,在冷却过程中形成分子晶格的几率比较大,很难形成玻璃。,重要因素:共价因素和强的极化作用,结论:三种纯键型在一定条件下都不能形成玻璃。,离子共价混合键,Why?,金属共价混合键,什么键型才能形成玻璃?,当离子键向共价键过渡,离子共价混合键,主要在于有SP电子形

11、成的杂化轨道,并构成键和键,通过强烈的极化作用,这种混合键既具有离子键易改变键角、易形成无对称变形的趋势,有利于造成玻璃的远程无序,又有共价键的方向性和饱和性,不易改变键长和键角的倾向,造成玻璃的近程有序,因此容易形成玻璃。,例SiO4内表现为共价键特性,其OSiO键角为109028/,而四面体共顶连结, OSiO键角能在较大范围内无方向性的连接起来,表现了离子键的特性。按电负性估计离子键比例由5(如As2O3)到75(如BeF2)都有可能形成玻璃。,第三节 玻璃的结构学说,玻璃的结构:是指玻璃中质点在空间的几何配置、有序程度 以及彼此间的结合状态。 玻璃结构特点:近程有序,远程无序。,不同科

12、学家对玻璃的认识,玻璃结构研究的历史,玻璃结构研究的历史,不同科学家对玻璃的认识: 门捷列夫:玻璃是一个无定形物质,没有固定化学 组成,与 合金类似。Sockman :玻璃的结构单元是具有一定的化学组成 的分子 聚合体。 Tamman :玻璃是一种过冷液体。 两个很重要的学说:,无规则网络学说,晶子学说,一、晶子学说(在前苏联较流行)1、实验:(1)1921年列别捷夫在研究硅酸盐玻璃时发现,玻璃加热到573时其折射率发生急剧变化,而石英正好在573发生 型的转变。在此基础上他提出玻璃是高分散的晶子的集合体,后经瓦连柯夫等人逐步完善。上述现象对不同玻璃,有一定普遍性。400600为玻璃的Tg、Tf温度。(2)研究钠硅二元玻璃的x射线散射强度曲线:,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > PPT模板库 > 其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号