过程特性与动态模型建立

上传人:mg****85 文档编号:55040386 上传时间:2018-09-23 格式:PPT 页数:66 大小:1.46MB
返回 下载 相关 举报
过程特性与动态模型建立_第1页
第1页 / 共66页
过程特性与动态模型建立_第2页
第2页 / 共66页
过程特性与动态模型建立_第3页
第3页 / 共66页
过程特性与动态模型建立_第4页
第4页 / 共66页
过程特性与动态模型建立_第5页
第5页 / 共66页
点击查看更多>>
资源描述

《过程特性与动态模型建立》由会员分享,可在线阅读,更多相关《过程特性与动态模型建立(66页珍藏版)》请在金锄头文库上搜索。

1、第二节 过程特性与动态模型建立,一、典型受控过程 在实际工业过程中,受控的过程往往是比较复杂的,其数学模型一般均为非线性、分布参数和时变等。在一定条件下可以线性化、集总化以便于分析和设计,而一般的线性系统大部分可由纯滞后,单容、双容这几种简单环节组成。 1、纯滞后过程 纯滞后:当输入变量改变后,输出变量并不立即改变,而是要经过一段时间后才反映出来。,例1:加热炉给流体加热过程,例2:传送带传送物料,图1-2-1 重量传感器对固体流量变化的响应,纯滞后传递函数: 频率特性: 2、单容过程(非振荡过程) (1)无自衡的单容过程,h,Qi,Qo,图1-2-2 单容过程,水槽所容纳的流体体积的变化速度

2、=输入流量-输出流量 即 如果储液罐截面恒定,则:,返回,(1-2-1),初始条件:h(0)=h0,h(0)=0,其阶跃响应如下,相应的拉氏变换: (1-2-2) 纯积分环节: (1-2-3) 由(1-2-1)知: Qi=Qo h 恒定 QiQo h=Kt+h0 t ,h=0, 抽干 h ,满溢,无自衡过程就是指当注入贮槽的流量发生改变时,容积会出现满溢或抽干的现象,即容积没有自动恢复平衡的能力。,(2)有自衡的单容过程(有自衡的非振荡过程) 将图1-2-2中的泵改为手动阀门。则Qo和液位h有关, 液位与流量的关系式 假设系统为定值控制:,Qo,h,h为工作点,线性化:,由(1-2-2)(1-

3、2-4)知,(1-2-4),Qi(s),+ Qo (s),_,H(s),传递函数:,h(),阶跃曲线:,1-2-5,t,有自衡是指当输入变量发生改变时,过程能自发的趋于新的平衡状态。,h(t),(3)其他单容过程:,Kv1,Kv2,P,P1,P2,R,储气罐压力,RC 电路,RC回路:,C,Ui,Uo,3、多容过程 由两个或两个以上的单容过程组成,图1-2-6,(1)无互相影响的双容系统:,(1-2-5),(1-2-6),(1-2-7),(1-2-8),其中A1,A2分别为罐1,罐2的横截面积,可看作两个单容过程简单的串联在一起,Qi(s),Q1(s),H1(s),Q2(s),H2(s),方框

4、图:,根据方框图得:,(1-2-9),其中:,(2)具有互相影响的双容过程:,H2(s),方框图:,由方框图知:,(1-2-11),(1-2-10),其中:,与无相互影响的双容过程不同: 1、H1对Qi的响应不再是一阶过程 2、分母中多一项A1R2,传函的特征根:,由,过阻尼情况,系统是自衡的,式(1-2-11)可写成等效形式:,其中:,(3)多容过程 对于没有相互影响的多容过程,由N个一阶惯性环节串联而成,系统函数为:,当T1=T2T时,说明等效的无相互影响过程中一个容积响应变快了,另一个却变慢了,随着N的增加,时间响应越来越接近于一阶加纯滞后过程,对于有相互影响的多容过程,也可以等效为由若

5、干个无影响的容积组成的多容过程,可用一阶纯滞后过程来近似,随N的增大,说明:一些塔板式精馏塔,萃取塔,吸收塔,气动传输管线 呈现有相互影响的多容过程特性 具有分布参数特性的过程,4、具有反向特性的过程 反向响应:过程的阶跃响应在初始的情况和最终情况时方向相反 例:一个锅炉汽包的水位控制 汽包水位=水量+汽泡体积,该曲线特性是两个环节共同作用的结果,图1-2-11,(1)给水的增加引起汽泡的沸腾减弱,从而水位下降,其传函:,(2)在传热量恒定,储水量随进水量的增加而增加,其传函:,(3)两个环节共同作用的结果:,当k2T1k1时,是非最小相位系统。反向响应过程在初期易产生误操作。即冷水量增加,液

6、位本应是升高的,但由于虚假水位的影响,导致水位看起来是下降的。导致操作者进一步增大冷水的供给量,从而使汽包水位超限,5、不稳定过程 除了无自衡的单容过程外,其他的过程是稳定的,另外吸热反应是稳定的,但是也存在不稳定的过程。 例:放热反应:温度 ,反应速度加快, 放热量 ,温度 ,其内部存在正反馈过程,过程的任意极点都在右平面,系统是不稳定的。,二、k,T,对控制品质的影响 (1)本节讨论的是有自衡的非振荡过程,三个参数对控制系统的品质影响 (2)对广义对象而言存在两个通道:控制通道和扰动通道。,通道:由对象的输入变量至输出变量的信号联系 控制通道:控制作用至被控变量的信号联系 干扰通道:干扰作

7、用至被控变量的信号联系,GF(s) : 扰动作用对受控变量的影响 G0(s) :控制作用对受控变量的影响,-,H(s),GV(s),Gp(s),GF(s),Q(s),U(s),F(s),Gc(s),G0 (s),Y(s),单容水槽对象 K等于对象重新稳定后的输出变化量与输入变化量之比,则称K为对象的放大系数,1、K的影响:K称为静态增益,也叫放大倍数,(1)控制通道的增益K0 系统的开环增益 K=KcK0, K对控制品质的影响 K不能太大,以保证闭环系统的稳定性 设系统开环传函为KG(s),则闭环系统的稳定裕度为,K不能太小,否则系统克服偏差的能力太弱,消除偏差的速度太慢,误差传函:,则K越大

8、动态的误差消除越快,最终误差越小。,K对偏差的影响,由于KC可调,所以KO值的大小可通过KC的调整来补偿。 但在实际情况中,KO的值不能太大或太小 当KO过小时则KC就要选得非常大,控制信号会饱和,此时KC就不起作用了; 控制阀存在干摩擦,它的执行机构存在滞环等非线性,如果KO过大,会造成系统的振荡。 (2)扰动通道的增益:Kf Kf越大,则扰动的幅度越大,越难控制。 (3)控制器参数KC的选择和KO有关 线性对象: KO在不同的工作点基本恒定 非线性对象: KO在不同的工作点是不同的,2、时间常数T的影响:反映了受控对象受到输入作用后输出达到稳定值的快慢。 (1)控制通道时间常数T0 当有一

9、个常数T0:在ko, 0/T0 恒定的条件下,T0越大,则过渡过程越慢,系统容易稳定。 有两个或多个时间常数:则最大时间常数T01决定了过程的快慢,而T02/T01则反映了系统的可控程度。 T02/T01 越小,则越接近一阶环节,系统越容易稳定。,(2)扰动变通道时间常数Tf,Tf0时,扰动直接作用在对象上 Tf越大, 扰动对受控变量的影响越小,3、时滞 的影响 对象受到输入作用后,被控变量不能立即而迅速地变化,这种现象称为滞后现象。 根据滞后性质的不同,可分为两类: 纯滞后(传递滞后):信号传递需要时间 容量滞后:对象本身是高阶过程或分布参数过程.,(1)纯滞后(传递滞后)0 由于介质的输送

10、需要一段时间而引起的,由于测量点选择不当、测量元件安装不合适等原因也会造成传递滞后,纯滞后对象的特性 输入量发生变化时,输出量不是立即反映输入量的变化,而是要经过一段纯滞后时间0 以后,才开始等量地反映原无滞后时的输出量的变化 数学关系式,(2) 容量滞后h 有些对象在受到阶跃输入作用后,输出量开始变化很慢,后来才逐渐加快,最后又变慢直至逐渐接近稳定值,这种现象叫容量滞后或过渡滞后 容量滞后一般是由于物料或能量的传递需要通过一定阻力而引起的,二阶对象阶跃响应 输入量在作阶跃变化的瞬间,输出量变化的速度等于零 随着t的增加,变化速度慢慢增大 当大于某一个t1值后,变化速度又慢慢减小 直至t 时,

11、变化速度减少为零,用一阶对象的特性(有滞后)来近似二阶对象 在二阶对象阶跃响应曲线上,过响应曲线的拐点o作一切线,与时间轴相交 交点与被控变量开始变化的起点之间的时间间隔为容量滞后时间 由切线与时间轴的交点到切线与稳定值的交点之间时间间隔为T,滞后时间= 纯滞后0 + 容量滞后h,(3)控制通道时滞0 : 0存在不利于控制, 0 越小越好 0 /T0 反应了时滞的相对影响,0 /T0 0.3 容易控制,0 /T0 0.5 不容易控制,(4)扰动通道f f并不影响控制系统的性能,只是使扰动推迟了时间f再作用于系统。,1、数学模型的基本概念 定义:用数学的方法来描述对象输入量与输出量之间的关系,这

12、种关于对象特性的数学描述就称为对象的数学模型,它包括动态数学模型和静态数学模型。 输出变量:被控变量 输入变量:干扰作用和控制作用,三、过程动态模型建立,静态数学模型与动态数学模型 静态数学模型描述的是对象在静态时的输入量与输出量之间的关系相对静止,各信号变化率为0 是代数方程 动态数学模型描述的是对象在输入量改变以后输出量的变化情况是微分方程 静态数学模型是对象在达到平衡状态时的动态数学模型的一个特例,用于控制的数学模型与用于工艺的数学模型 基于同样的物理和化学规律,原始方程可能相同 用于控制的数学模型:动态模型 工艺流程和设备尺寸等都已确定 研究对象的输入变量如何影响输出变量 用于工艺的数

13、学模型:静态模型 产品规格和产量已经确定 通过模型的计算确定设备的结构、尺寸、工艺流程和某些工艺条件,被控对象数学模型的形式: 按连续性划分:连续系统模型,离散系统模型 按模型结构划分:输入输出模型,状态空间模型 按论域划分:时域模型,频域模型 线性非线性等 参量模型非参量模型 非参量模型 参量模型,非参量模型 可以用对象在一定形式的输入作用下的输出曲线或数据来表示,可通过实验直接得到 阶跃响应曲线 脉冲响应曲线 矩形脉冲响应曲线 频率特性响应曲线 缺乏数学方程的解析性质,要直接利用它们进行系统的分析和设计比较困难,参量模型 描述对象输入、输出关系的常微分方程、偏微分方程、状态方程、差分方程等

14、形式 对于线性的集中参数对象,通常可用常系数线性微分方程式来描述 参量与对象的特性有关,一般需要通过对象的内部机理分析或大量的实验数据处理,建模的目的 控制系统的方案设计 被控变量及检测点的选择 操纵变量的确定 控制系统结构形式的确定 控制系统的调试和控制器参数的确定 控制系统的安全投运并进行必要的调试 控制器控制规律的选择及控制器参数的确定 制定工业过程操作优化方案 对象的静态数学模型,新型控制方案及控制算法的确定 预测控制 推理控制 前馈动态补偿 计算机仿真与过程培训系统 在计算机上对各种控制策略进行定量的比较与评定 在计算机上仿效实际的操作,进行操作培训 制定大型设备启动和停车的操作方案

15、 设计工业过程的故障检测与诊断系统 对模型的要求: 准确可靠 简单:(1)复杂,则计算量大 (2)对某些方案,如复杂,则控制规律越复杂 (3)复杂,则不利于参数估计,2、建立模型的基本方法,(1)机理建模 定义:机理建模是根据对象或过程的内部机理,列写出各种有关的平衡方程,从而获取对象(过程)的数学模型,这类模型通常称为机理模型 物料平衡方程 能量平衡方程 动量平衡方程 相平衡方程 某些物性方程、设备的特性方程 化学反应定律、电路基本定律 本节中单容、双容用的就是机理建模。,模型处理 消除中间变量。 非线性模型的线性化 机理建模的局限性: 有些复杂系统的过程机理还不知道,或只是了解一部分机理;

16、 机理建模是基于简化和假设之上的。,(2)辨识建模法 利用过程的输入和输出的实测数据,进行某种处理,之后得到过程的数学模型。 黑箱辨识法:对过程或系统的内部情况一点都不知道,只能根据输入和输出数据辨识过程的模型。 灰箱辨识法:对过程的某些特性是已知的。 输入信号的选取:输入信号激励输出信号变化,从输入输出信号的相对变化规律中得到模型。 输入信号不是任意的,而是一些典型的信号。如阶跃信号、脉冲信号、正弦函数、白噪声、日常的工作数据、伪随机双值信号。,3、几种经典的辨识方法 (1)由阶跃响应曲线辨识传函 利用阶跃响应曲线来确定K,T , 阶跃响应曲线的获取:加阶跃,记录输出变化。应注意以下几点: 合理选择阶跃信号的幅度。 试验开始前确保受控对象处于某一选定的稳定工况。实验期间应避免发生偶然性的其它干扰。 对于非线性对象,应选择不同的负荷,在受控变量的不同工作点上多次测试。在同一工作点也要在正向和反向扰动下重复测试,以求全面掌握对象的动态特性。,

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号