模拟信号的数字传输_1

上传人:aa****6 文档编号:54840048 上传时间:2018-09-20 格式:PPT 页数:122 大小:1.92MB
返回 下载 相关 举报
模拟信号的数字传输_1_第1页
第1页 / 共122页
模拟信号的数字传输_1_第2页
第2页 / 共122页
模拟信号的数字传输_1_第3页
第3页 / 共122页
模拟信号的数字传输_1_第4页
第4页 / 共122页
模拟信号的数字传输_1_第5页
第5页 / 共122页
点击查看更多>>
资源描述

《模拟信号的数字传输_1》由会员分享,可在线阅读,更多相关《模拟信号的数字传输_1(122页珍藏版)》请在金锄头文库上搜索。

1、1,通信原理,第9章模拟信号的数字传输,2,第9章模拟信号的数字传输,9.1 引言 数字化3步骤:抽样、量化和编码,3,第9章模拟信号的数字传输,9.2 模拟信号的抽样 9.2.1 低通模拟信号的抽样定理 抽样定理:设一个连续模拟信号m(t)中的最高频率 fH,则以间隔时间为T 1/2fH的周期性冲激脉冲对它抽样时,m(t)将被这些抽样值所完全确定。【证】设有一个最高频率小于fH的信号m(t) 。将这个信号和周期性单位冲激脉冲T(t)相乘,其重复周期为T,重复频率为fs = 1/T。乘积就是抽样信号,它是一系列间隔为T 秒的强度不等的冲激脉冲。这些冲激脉冲的强度等于相应时刻上信号的抽样值。现用

2、ms(t) = m(kT)表示此抽样信号序列。故有用波形图示出如下:,4,第9章模拟信号的数字传输,5,第9章模拟信号的数字传输,令M(f)、(f)和Ms(f)分别表示m(t)、T(t)和ms(t)的频谱。按照频率卷积定理,m(t)T(t)的傅里叶变换等于M(f)和(f)的卷积。因此,ms(t)的傅里叶变换Ms(f)可以写为:而(f)是周期性单位冲激脉冲的频谱,它可以求出等于:式中,将上式代入 Ms(f)的卷积式,得到,6,第9章模拟信号的数字传输,上式中的卷积,可以利用卷积公式:进行计算,得到上式表明,由于M(f - nfs)是信号频谱M(f)在频率轴上平移了nfs的结果,所以抽样信号的频谱

3、Ms(f)是无数间隔频率为fs的原信号频谱M(f)相叠加而成。 用频谱图示出如下:,7,第9章模拟信号的数字传输,f,8,第9章模拟信号的数字传输,因为已经假设信号m(t)的最高频率小于fH,所以若频率间隔fs 2fH,则Ms(f)中包含的每个原信号频谱M(f)之间互不重叠,如上图所示。这样就能够从Ms(f)中用一个低通滤波器分离出信号m(t)的频谱M(f),也就是能从抽样信号中恢复原信号。这里,恢复原信号的条件是:即抽样频率fs应不小于fH的两倍。这一最低抽样速率2fH称为奈奎斯特速率。与此相应的最小抽样时间间隔称为奈奎斯特间隔。,9,第9章模拟信号的数字传输,恢复原信号的方法:从上图可以看

4、出,当fs 2fH时,用一个截止频率为fH的理想低通滤波器就能够从抽样信号中分离出原信号。从时域中看,当用抽样脉冲序列冲激此理想低通滤波器时,滤波器的输出就是一系列冲激响应之和,如下图所示。这些冲激响应之和就构成了原信号。理想滤波器是不能实现的。实用滤波器的截止边缘不可能做到如此陡峭。所以,实用的抽样频率fs必须比2fH 大一些。例如,典型电话信号的最高频率通常限制在3400 Hz,而抽样频率通常采用8000 Hz。,t,10,第9章模拟信号的数字传输,9.2.2 带通模拟信号的抽样定理设带通模拟信号的频带限制在fL和fH之间,如图所示。即其频谱最低频率大于fL,最高频率小于fH,信号带宽B

5、= fH fL。可以证明,此带通模拟信号所需最小抽样频率fs等于式中,B 信号带宽;n 商(fH / B)的整数部分,n =1,2,;k 商(fH / B)的小数部分,0 k 1。按照上式画出的fs和fL关系曲线示于下图:,11,第9章模拟信号的数字传输,由于原信号频谱的最低频率fL和最高频率fH之差永远等于信号带宽B,所以当0 fL B时,有B fH 2B。这时n = 1,而上式变成了fs = 2B(1 + k)。故当k从0变到1时,fs从2B变到4B,即图中左边第一段曲线。当fLB时,fH2B,这时n = 2。故当k0时,上式变成了fs = 2B,即fs从4B跳回2B。当B fL 2B时,

6、有2B fH 3B。这时,n = 2,上式变成了fs = 2B(1 + k/2),故若k从0变到1,则fs从2B变到3B,即图中左边第二段曲线。当fL2B时,fH3B,这时n = 3。当k0时,上式又变成了fs = 2B,即fs从3B又跳回2B。依此类推。,12,第9章模拟信号的数字传输,由上图可见,当fL = 0时,fs 2B,就是低通模拟信号的抽样情况;当fL很大时,fs趋近于2B。fL很大意味着这个信号是一个窄带信号。许多无线电信号,例如在无线电接收机的高频和中频系统中的信号,都是这种窄带信号。所以对于这种信号抽样,无论fH是否为B的整数倍,在理论上,都可以近似地将fs取为略大于2B。

7、图中的曲线表示要求的最小抽样频率fs,但是这并不意味着用任何大于该值的频率抽样都能保证频谱不混叠。,13,第9章模拟信号的数字传输,9.3 模拟脉冲调制 模拟脉冲调制的种类 周期性脉冲序列有4个参量:脉冲重复周期、脉冲振幅、脉冲宽度和脉冲相位(位置)。 其中脉冲重复周期(抽样周期)一般由抽样定理决定,故只有其他3个参量可以受调制。 3种脉冲调制: 脉冲振幅调制(PAM) 脉冲宽度调制(PDM) 脉冲位置调制(PPM) 仍然是模拟调制,因为其代表信息的参量仍然是可以连续变化的。,14,第9章模拟信号的数字传输,模拟脉冲调制波形,(a)模拟基带信号 (b) PAM信号(c) PDM信号 (d) P

8、PM信号,15,第9章模拟信号的数字传输,PAM调制 PAM调制信号的频谱设:基带模拟信号的波形为m(t),其频谱为M(f);用这个信号对一个脉冲载波s(t)调幅,s(t)的周期为T,其频谱为S(f);脉冲宽度为,幅度为A;并设抽样信号ms(t)是m(t)和s(t)的乘积。则抽样信号ms(t)的频谱就是两者频谱的卷积:式中 sinc(nfH) = sin(nfH) / (nfH),16,第9章模拟信号的数字传输,PAM调制过程的波形和频谱图,17,第9章模拟信号的数字传输,由上图看出,若s(t)的周期T (1/2fH),或其重复频率fs 2fH,则采用一个截止频率为fH的低通滤波器仍可以分离出

9、原模拟信号。 自然抽样和平顶抽样 在上述PAM调制中,得到的已调信号ms(t)的脉冲顶部和原模拟信号波形相同。这种PAM常称为自然抽样。在实际应用中,则常用“抽样保持电路”产生PAM信号。这种电路的原理方框图如右:,18,第9章模拟信号的数字传输,平顶抽样输出波形平顶抽样输出频谱设保持电路的传输函数为H(f),则其输出信号的频谱MH(f)为:上式中的Ms(f)用代入,得到,19,第9章模拟信号的数字传输,比较上面的MH(f)表示式和Ms(f)表示式可见,其区别在于和式中的每一项都被H(f)加权。因此,不能用低通滤波器恢复(解调)原始模拟信号了。但是从原理上看,若在低通滤波器之前加一个传输函数为

10、1/H(f)的修正滤波器,就能无失真地恢复原模拟信号了。,20,第9章模拟信号的数字传输,9.4 抽样信号的量化 9.4.1 量化原理 设模拟信号的抽样值为m(kT),其中T是抽样周期,k是整数。此抽样值仍然是一个取值连续的变量。若仅用N个不同的二进制数字码元来代表此抽样值的大小,则N个不同的二进制码元只能代表M = 2N个不同的抽样值。因此,必须将抽样值的范围划分成M个区间,每个区间用一个电平表示。这样,共有M个离散电平,它们称为量化电平。用这M个量化电平表示连续抽样值的方法称为量化。,21,第9章模拟信号的数字传输,量化过程图M个抽样值区间是等间隔划分的,称为均匀量化。M个抽样值区间也可以

11、不均匀划分,称为非均匀量化。,22,第9章模拟信号的数字传输,量化一般公式设:m(kT)表示模拟信号抽样值,mq(kT)表示量化后的量化信号值,q1, q2,qi, , q6是量化后信号的6个可能输出电平,m1, m2, ,mi, , m5为量化区间的端点。则可以写出一般公式: 按照上式作变换,就把模拟抽样信号m(kT)变换成了量化后的离散抽样信号,即量化信号。,23,第9章模拟信号的数字传输,量化器 在原理上,量化过程可以认为是在一个量化器中完成的。量化器的输入信号为m(kT),输出信号为mq(kT) ,如下图所示。在实际中,量化过程常是和后续的编码过程结合在一起完成的,不一定存在独立的量化

12、器。,24,第9章模拟信号的数字传输,9.4.2 均匀量化 均匀量化的表示式设模拟抽样信号的取值范围在a和b之间,量化电平数为M,则在均匀量化时的量化间隔为且量化区间的端点为若量化输出电平qi取为量化间隔的中点,则显然,量化输出电平和量化前信号的抽样值一般不同,即量化输出电平有误差。这个误差常称为量化噪声,并用信号功率与量化噪声之比衡量其对信号影响的大小。,i = 0, 1, , M,25,第9章模拟信号的数字传输,均匀量化的平均信号量噪比在均匀量化时,量化噪声功率的平均值Nq可以用下式表示式中, mk为模拟信号的抽样值,即m(kT);mq为量化信号值,即mq(kT);f(mk)为信号抽样值m

13、k的概率密度;E表示求统计平均值;M为量化电平数;,26,第9章模拟信号的数字传输,信号mk的平均功率可以表示为 若已知信号mk的功率密度函数,则由上两式可以计算出平均信号量噪比。,27,第9章模拟信号的数字传输,【例9.1】设一个均匀量化器的量化电平数为M,其输入信号抽样值在区间-a, a内具有均匀的概率密度。试求该量化器的平均信号量噪比。【解】因为所以有,28,第9章模拟信号的数字传输,另外,由于此信号具有均匀的概率密度,故信号功率等于所以,平均信号量噪比为或写成由上式可以看出,量化器的平均输出信号量噪比随量化电平数M的增大而提高。,dB,29,第9章模拟信号的数字传输,9.4.3 非均匀

14、量化 非均匀量化的目的:在实际应用中,对于给定的量化器,量化电平数M和量化间隔v都是确定的,量化噪声Nq也是确定的。但是,信号的强度可能随时间变化(例如,语音信号)。当信号小时,信号量噪比也小。所以,这种均匀量化器对于小输入信号很不利。为了克服这个缺点,改善小信号时的信号量噪比,在实际应用中常采用非均匀量化。,30,第9章模拟信号的数字传输,非均匀量化原理 在非均匀量化时,量化间隔随信号抽样值的不同而变化。信号抽样值小时,量化间隔v也小;信号抽样值大时,量化间隔v也变大。 实际中,非均匀量化的实现方法通常是在进行量化之前,先将信号抽样值压缩,再进行均匀量化。这里的压缩是用一个非线性电路将输入电

15、压x变换成输出电压y:y = f(x) 如右图所示:图中纵坐标y 是均匀刻度的,横坐标x 是非均匀刻度的。所以输入电压x越小,量化间隔也就越小。也就是说,小信号的量化误差也小。,31,第9章模拟信号的数字传输,非均匀量化的数学分析当量化区间划分很多时,在每一量化区间内压缩特性曲线可以近似看作为一段直线。因此,这段直线的斜率可以写为:并有设此压缩器的输入和输出电压范围都限制在0和1之间,即作归一化,且纵坐标y 在0和1之间均匀划分成N个量化区间,则每个量化区间的间隔应该等于将其代入上式,得到,32,第9章模拟信号的数字传输,为了对不同的信号强度保持信号量噪比恒定,当输入电压x减小时,应当使量化间

16、隔x 按比例地减小,即要求x x因此上式可以写成或式中,k 比例常数。上式是一个线性微分方程,其解为:,33,第9章模拟信号的数字传输,为了求出常数c,将边界条件 (当x = 1时,y = 1),代入上式,得到 k + c =0故求出 c = -k将c 的值代入上式,得到即要求y f(x)具有如下形式:由上式看出,为了对不同的信号强度保持信号量噪比恒定,在理论上要求压缩特性具有对数特性。但是,该式不符合因果律,不能物理实现,因为当输入x 0时,输出y - ,其曲线和上图中的曲线不同。所以,在实用中这个理想压缩特性的具体形式,按照不同情况,还要作适当修正,使当x0时,y0。,34,第9章模拟信号的数字传输,关于电话信号的压缩特性,国际电信联盟(ITU)制定了两种建议,即A压缩律和压缩律,以及相应的近似算法 13折线法和15折线法。我国大陆、欧洲各国以及国际间互连时采用A律及相应的13折线法,北美、日本和韩国等少数国家和地区采用律及15折线法。下面将分别讨论这两种压缩律及其近似实现方法。,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > PPT模板库 > PPT素材/模板

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号