电磁感应(完成)

上传人:飞*** 文档编号:53661130 上传时间:2018-09-03 格式:PDF 页数:16 大小:516.02KB
返回 下载 相关 举报
电磁感应(完成)_第1页
第1页 / 共16页
电磁感应(完成)_第2页
第2页 / 共16页
电磁感应(完成)_第3页
第3页 / 共16页
电磁感应(完成)_第4页
第4页 / 共16页
电磁感应(完成)_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《电磁感应(完成)》由会员分享,可在线阅读,更多相关《电磁感应(完成)(16页珍藏版)》请在金锄头文库上搜索。

1、电磁感应任务书班级组别组长组员一、比较左手定则,右手定则与安培定则。类型判断对象判断方法安培定则左手定则右手定则二、简述电磁感应定律三、日光灯工作原理四、楞次定律的内容电磁感应基本知识1.1 磁路的基本知识1.1.1 电路与磁路对于电路系统来说,在电动势E的作用下电流I从E的正极通过导体流向负极。构成一个完整的电路系统需要电动势、电导体,并可以形成电流。在磁路系统中,也有一个磁动势F(类似于电路中的电势),在F的作用下产生一个(类似于电路中的电流),磁通从磁动势的N极通过一个通路(类似于电路中的导体)到S极,这个通路就是磁路。由于铁磁材料磁导率比空气大几千倍,即空气磁阻比铁磁材料大几千倍,所以

2、构成磁路的材料均使用导磁率高的铁磁材料。然而非铁磁物质,如空气也能通过磁通,这就造成铁磁材料构成磁路的周围空气中也必然会有磁通(,由于空气磁阻比铁磁材料大几千倍,因而比小的多,常常被称为漏磁通,称为主磁通。因此磁路问题比电路问题要复杂的多。1.1.2 电机电器中的磁路磁路系统广泛应用在电器设备之中,如变压器、电机、继电器等。并且在电机和某些电器的磁路中,一般还需要一段空气隙,或者说空气隙也是磁路的组成部分。图 11 是电机电器的几种常用磁路结构。图(a) 是普通变压器的磁路,它全部由铁磁材料组成;图 (b) 是电磁继电器磁路,它除了铁磁材料外,还有一段空气隙。图(c) 表示电机的磁路,也是由铁

3、磁材料和空气隙组成;图(b) 是无分支的串联磁路,空气隙段和铁磁材料串联组成;图 (a) 是有分支的并联磁路。图中实(或虚)线表示磁通的路径。(a) (b) (c) 图 11 几种常用电器的典型磁路(a) 普通变压器铁芯; (b) 电磁继电器常用铁芯; (c) 电机磁路1.1.3 电气设备中磁动势的产生为了产生较强的磁场,在一般电气设备中都使用电流产生磁场。电流产生磁场的方法是:把绕制好的N匝线圈套装在铁心上,并在线圈内通入电流i,这样在铁心和线圈周围的空间中就会形成磁场,其中大多数磁通通过铁心,称为主磁通;小部分围绕线圈,称为漏磁通,如图 12 所示。套装在铁心上用于产生磁通的N匝线圈称为励

4、磁线圈,励磁线圈中的电流i称为励磁电流。 若励磁电流为直流,磁路中的磁通是恒定的,不随时间变化,这种磁路称为直流磁路,直流电机的磁路属于这一类;若励磁电流为交流,磁路中的磁通是交变的,随时间变化,这种磁路称为交流磁路,交流电机、变压器的磁路属于这一类。图 1 2 磁动势的产生和磁路欧姆定律值得注意的是,除了电流产生磁场外,电机电器中还使用了大量的永久磁铁。而且随着科学技术的发展,永久磁铁的磁性将越来越强。可以预见永久磁铁将在电机电器中得到广泛的应用1.2 磁场的基本知识为了准确描述磁场的大小、方向及其性质,便于分析、计算和设计磁路,常用如下物理量描述磁场。1.2.1 磁感应强度(磁通密度)B描

5、述磁场强弱及方向的物理量称为磁感应强度B。为了形象地描绘磁场,往往采用磁感应线,常称为磁力线,磁力线是无头无尾的闭合曲线。图13 中画出了直线电流及螺线管电流产生的磁力线。(a) (b) 图 13 电流磁场中的磁力线(a) 直线电流; (b) 螺线管电流磁力线的方向与产生它的电流方向满足右手螺旋关系,如图1 3(a)所示。在国际单位制中, 磁感应强度B的单位为特 (特斯拉), 单位符号为T, 即211/TWb m(韦伯 /米2) 。1.2.2 磁通穿过某一截面S的磁感应强度B的通量,即穿过截面S的磁力线根数称为磁感应通量,简称磁通。用表示。即sdSB(11)图 14 均匀磁场中的磁通在均匀磁场

6、中,如果截面S 与B垂直,如图1 4 所示,则上式变为BS或B S(12)式中,B为磁通密度,简称磁密,S为面积。在国际单位制中,的单位名称为韦(韦伯),单位符号Wb。1.2.3 磁场强度H计算导磁物质中的磁场时,引入辅助物理量磁场强度H,它与磁密B的关系为HB(13)式中,为导磁物质的磁导率。真空的磁导率为7 0410/Hm。铁磁材料的0,例如铸钢的约为0的 1000 倍,各种硅钢片的约为0的 60007000 倍。国际单位制中,磁场强度H的单位名称为安(安培)/米,单位符号/A m。1.3 电磁学的基本定律1.3.1 安培环路定律描述电流产生磁场的规律凡导体中有电流流过时,就会产生与该载流

7、导体相交链的磁通。在磁场中,沿任意一个闭合磁回路的磁场强度线积分等于该回路所交链的所有电流的代数和,即lH d li(14)式中,i就是该磁路所包围的全电流。因此,式(1 4)也称全电流定律。如 图1 5 所 示 , 电 流1i、2i、3i产 生 的 磁 场 , 沿 封 闭 曲 线 磁 场 强 度 满 足123lH d liii。图 15 中,与磁力线(闭合回线)符合右手螺旋关系的取正号,反之SB取负号。图 15 安培环路定律1.3.2 电磁感应定律描述磁场产生电势的规律当导体处于变化的磁场(磁通) 中时,导体中会产生感应电势,这就是电磁感应现象。这个感应电势的大小和磁通随时间的变化率的负值成

8、正比,这就是电磁感应定律。例如匝数为N的线圈所交链的磁通为,当该磁通随时间发生变化时,线圈产生的感应电动势为deNdt(15)式( 1 5)为电磁感应定律的数学描述。在电机学中,电磁感应现象有两个方面:一、变压器电动势图 16 为变压器电动势产生原理图。线圈1N通入随时间而变的电流1i,这时由1i所产生的磁通也随时间而变,磁通沿导磁材料闭合。这时线圈1N和2N同时交链磁通,从而在线圈1N和2N中都会感应电动势1e和2e,感应电动势的正方向如图16 所示,其表达式如下11deNdt(16)22deNdt(17)图 16 变压器电动势在此例中,由线圈1N中电流1i的变化而在自身线圈1N感应的电动势

9、1e称为自感电动势,而由线圈1N中电流1i的变化在另一线圈2N内感应的电动势2e称为 互感电动势 。感应电势还可以表示为磁链的方式,如式(16) 和(17) 可表示为11/eddt和22/eddt,其中1和2为磁链,分别为11N、22N。通常把单位电流产生的磁链定义为线圈的电感,用符号L表示, 单位为H,亨(亨利) 。于是有/Li。二、旋转电动势旋转电动势是由于线圈(或导体) 和磁场之间存在的运动,使得线圈中的磁通发生变化,而产生电动势,所以称之为旋转电动势。如果线圈(或导体)所处的磁通密度B为均匀磁密时,旋转电动势值的计算公式为:eBvl(18)式中,v为导体运动的线速度,单位为/m s;B

10、为导体所处的磁通密度,单位为T;l为导体的有效长度,单位为m;e为导体中感应电动势,单位为V。旋转电动势方向由右手定则决定,即: 伸开右手, 使大拇指与其余四指互相垂直并在一个平面内,让磁力线穿过手心,大拇指指向导体相对于磁场的运动方向,则四指所指的方向为旋转电动势的方向。右手定则法如图17 所示。图 17 确定旋转电动势方向的右手定则1.3.3 毕萨电磁力定律 描述电磁作用产生力的规律载流导体在磁场中会受到力的作用,这种力是磁场与电流相互作用所产生的,故称为电磁力。若磁场与导体相互垂直,则作用在导体上的电磁力值为:liBf(19)式中,B为导体所处的磁通密度,单位为T;i为导体中的电流,单位

11、为A;l为导体在磁场中的有效长度,单位为m;f为作用在导体上的电磁力,单位为N m。电磁力的方向可用图18 所示的左手定则确定,即:伸开左手,大拇指与其余四指互相垂直,并保持在一个平面,让磁力线穿过手心,四指指向电流的方向,则大拇指所指的方向即为电磁力的方向。图 18 确定载流导体受力方向的左手定则1.3.4 磁路欧姆定律图 12 是一个单框铁心磁路的示意图。铁心上绕有N匝线圈,通以电流i产生的沿铁心闭合的主磁通,沿空气闭合的漏磁通。设铁心截面积为S,平均磁路长度为l,铁磁材料的磁导率为(不是常数,随磁感应强度B变化 )。假设漏磁通可以不考虑(即令0,假设磁通全部通过铁心),并且认为磁路l上的

12、磁场强度H处处相等,于是,根据全电流定律有lHdlHlNi( 110)因/BH,SB/,可得/()m mFNiFRlS或m mBllFNiHlRS(111)式中,NiF为磁动势,SlRm为磁阻,lSRmm1为磁导。式(111)即所谓磁路欧姆定律,与电路欧姆定律相似。它表明,当磁阻mR一定(即确定磁路情况下)磁动势F越大,所激发的磁通量也越大;当而磁动势F一定时,磁阻mR越大,则产生的磁通量越小。在磁路中,磁阻mR与磁导率成反比,空气的磁导率0远小于铁心的磁导率Fe,这表明漏磁路(空气隙)的R远大于铁心的mR,故分析中可忽略漏磁通。根据式( 111)和/Li,有2/mLNiN。1.3.5 磁路基

13、尔霍夫第一定律如果铁心不是一个简单的回路。而是带有并联分支的磁路,从而形成磁路的节点,则当忽略漏磁通时,在磁路任何一个节点处,磁通的代数和恒等于零,即 0(112)式( 112)与电路第一定律0i形式上相似,因此称为磁路的基尔霍夫第一定律,就是磁通连续性定律。若令流入节点的磁通定为( ) 。则流出该节点的磁通定为( ) 。如图 19 封闭面处有:0321磁路基尔霍夫第一定律表明,进人或穿出任一封闭面的总磁通量的代数和等于零,或穿入任一封闭面的磁通量恒等于穿出该封闭面的磁通量。图 19 磁路欧姆定律1.3.6 磁路基尔霍夫第二定律工程应用中的磁路,其几何形状往往是比较复杂的,直接利用安培环路定律

14、的积分形式进行计算有一定的困难。为此,在计算磁路时,要进行简化。简化的办法是把磁路分段,几何形状相同的分为一段,找出它的平均磁场强度,再乘上这段磁路的平均长度,求得该段的磁位降 (也可理解为一段磁路所消耗的磁动势)。然后把各段磁路的磁位降相加,结果就是总磁动势, 即沿任何闭合磁路的总磁动势恒等于各段磁位降的总和。称为磁路基尔霍夫第二定律:iNilHnkk 1(113)式中,kH为磁路里第k段磁路的磁场强度(A m);kl第k段磁路的平均长度(m);iN为作用在整个磁路上的磁动势,即全电流数(安匝 );N为励磁线圈的匝数。上式也可以理解为,消耗在任一闭合磁回路上的磁动势,等于该磁路所交链的全部电

15、流。图 110 磁路基尔霍夫第二定律图 110 中所示磁路可分为两段,一段为铁磁材料组成的铁心,总长度为2122ll,磁场强度为1H;另一段为气隙,长度为,磁场强度为H。铁心上有两组线圈,一组线圈的电流为1i,线圈的匝数为1N;另一组线圈的电流为2i,线圈的匝数为2N,由磁路基尔霍夫第二定律可得:2211211)22(NiNiHllH1.4 铁磁材料铁磁材料,一般是由铁或铁与钴、钨、镍、铝及其他金属的合金构成,迄今为止是最通用的磁性材料。虽然这些材料的性能差异很大,但决定其性能的基本现象却是共同的。1.4.1 铁磁材料的磁化研究发现,铁磁材料由许许多多的磁畴构成,每个磁畴相当于一个小永磁体,具有较强的磁矩,如图111 所示。在未磁化的材料样品中,所有磁畴摆列杂乱,因此材料对外不显磁性,如图1 11(a)所示。当外部磁场施加到这一材料时,磁畴就会沿施加的磁场方向转向,所有的磁畴平行,铁磁材料对外表现出磁性,如图111 (b)所示。因此,当外磁场加到铁磁材料时,铁磁材料产生比外部磁场单独作用所引起的磁场更强。随着外部磁场强度H的增加,这一现象会继续,直到所有的磁矩沿施加的磁场排列,此时,磁畴将不再能使磁通密度B增加,也就是说材料完全饱和。这也是铁磁材料的磁导率比非铁磁材料大的多的原因。(a) (b) 图 111 铁磁材料的磁化(a) 未磁化;(b) 磁化1.4.2 起始磁化曲线

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 其它文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号