体绘制传递函数设定方法的研究和应用

上传人:cjc****537 文档编号:48278703 上传时间:2018-07-12 格式:DOC 页数:37 大小:71.03KB
返回 下载 相关 举报
体绘制传递函数设定方法的研究和应用_第1页
第1页 / 共37页
体绘制传递函数设定方法的研究和应用_第2页
第2页 / 共37页
体绘制传递函数设定方法的研究和应用_第3页
第3页 / 共37页
体绘制传递函数设定方法的研究和应用_第4页
第4页 / 共37页
体绘制传递函数设定方法的研究和应用_第5页
第5页 / 共37页
点击查看更多>>
资源描述

《体绘制传递函数设定方法的研究和应用》由会员分享,可在线阅读,更多相关《体绘制传递函数设定方法的研究和应用(37页珍藏版)》请在金锄头文库上搜索。

1、计算机应用技术专业毕业论文计算机应用技术专业毕业论文 精品论文精品论文 体绘制传递函数设定体绘制传递函数设定方法的研究和应用方法的研究和应用关键词:传递函数关键词:传递函数 粒子群优化粒子群优化 并行层次聚类并行层次聚类 直接体绘制直接体绘制 地震数据地震数据摘要:体绘制是一种重要的三维数据场可视化方法,传递函数是体绘制过程中 用以定出体数据与光学特征的对应关系的关键步骤,传递函数的设定对成像的 质量具有重要作用。然而传递函数的设定往往需要大量尝试,困难且不直观, 寻找好的传递函数已被列为体数据可视化中的十大难题之一。 层次聚类应用 于传递函数设定领域取得了较好的效果,然而,单处理机以其有限的

2、运算能力 和存储能力难以在有效的时间内完成规模较大的三维体数据的聚类分析,为此 本文设计实现了层次聚类并行算法,并将其与 LH 直方图相结合以指导传递函数 的设定。与串行算法相比,并行层次聚类算法能在合理的时间内对三维体数据 进行聚类分析,并以相同聚类效果完成对传递函数设定的指导,最终得到高质 量的图像。 另一方面,若将寻找合适的传递函数的过程视为参数优化问题, 则可用全局最优化的方法来处理,遗传算法应用于传递函数的设定已有相当研 究。本文将粒子群算法以自动式和交互式两种进化方式应用于体绘制传递函数 设定领域,且在交互式实现方式中提出了基于用户的速度更新策略。与遗传算 法相比,基本型和改进型粒

3、子群算法具有更好的性能,能使用户更快的得到更 满意的体绘制图像。 最后,在地震数据可视化系统中,将粒子群优化算法、 手动调节和多分辨率显示功能三者相结合,为用户提供了一个自动式与交互式 相结合,具有实时反馈功能的双层结构的传递函数设定工具,使地球物理学家 用户在探索地震数据的过程中更加灵活和便利,从而提高地震勘探的精确度和 成功率。正文内容正文内容体绘制是一种重要的三维数据场可视化方法,传递函数是体绘制过程中用 以定出体数据与光学特征的对应关系的关键步骤,传递函数的设定对成像的质 量具有重要作用。然而传递函数的设定往往需要大量尝试,困难且不直观,寻 找好的传递函数已被列为体数据可视化中的十大难

4、题之一。 层次聚类应用于 传递函数设定领域取得了较好的效果,然而,单处理机以其有限的运算能力和 存储能力难以在有效的时间内完成规模较大的三维体数据的聚类分析,为此本 文设计实现了层次聚类并行算法,并将其与 LH 直方图相结合以指导传递函数的 设定。与串行算法相比,并行层次聚类算法能在合理的时间内对三维体数据进 行聚类分析,并以相同聚类效果完成对传递函数设定的指导,最终得到高质量 的图像。 另一方面,若将寻找合适的传递函数的过程视为参数优化问题,则 可用全局最优化的方法来处理,遗传算法应用于传递函数的设定已有相当研究。 本文将粒子群算法以自动式和交互式两种进化方式应用于体绘制传递函数设定 领域,

5、且在交互式实现方式中提出了基于用户的速度更新策略。与遗传算法相 比,基本型和改进型粒子群算法具有更好的性能,能使用户更快的得到更满意 的体绘制图像。 最后,在地震数据可视化系统中,将粒子群优化算法、手动 调节和多分辨率显示功能三者相结合,为用户提供了一个自动式与交互式相结 合,具有实时反馈功能的双层结构的传递函数设定工具,使地球物理学家用户 在探索地震数据的过程中更加灵活和便利,从而提高地震勘探的精确度和成功 率。 体绘制是一种重要的三维数据场可视化方法,传递函数是体绘制过程中用以定 出体数据与光学特征的对应关系的关键步骤,传递函数的设定对成像的质量具 有重要作用。然而传递函数的设定往往需要大

6、量尝试,困难且不直观,寻找好 的传递函数已被列为体数据可视化中的十大难题之一。 层次聚类应用于传递 函数设定领域取得了较好的效果,然而,单处理机以其有限的运算能力和存储 能力难以在有效的时间内完成规模较大的三维体数据的聚类分析,为此本文设 计实现了层次聚类并行算法,并将其与 LH 直方图相结合以指导传递函数的设定。 与串行算法相比,并行层次聚类算法能在合理的时间内对三维体数据进行聚类 分析,并以相同聚类效果完成对传递函数设定的指导,最终得到高质量的图像。另一方面,若将寻找合适的传递函数的过程视为参数优化问题,则可用全局 最优化的方法来处理,遗传算法应用于传递函数的设定已有相当研究。本文将 粒子

7、群算法以自动式和交互式两种进化方式应用于体绘制传递函数设定领域, 且在交互式实现方式中提出了基于用户的速度更新策略。与遗传算法相比,基 本型和改进型粒子群算法具有更好的性能,能使用户更快的得到更满意的体绘 制图像。 最后,在地震数据可视化系统中,将粒子群优化算法、手动调节和 多分辨率显示功能三者相结合,为用户提供了一个自动式与交互式相结合,具 有实时反馈功能的双层结构的传递函数设定工具,使地球物理学家用户在探索 地震数据的过程中更加灵活和便利,从而提高地震勘探的精确度和成功率。 体绘制是一种重要的三维数据场可视化方法,传递函数是体绘制过程中用以定 出体数据与光学特征的对应关系的关键步骤,传递函

8、数的设定对成像的质量具 有重要作用。然而传递函数的设定往往需要大量尝试,困难且不直观,寻找好 的传递函数已被列为体数据可视化中的十大难题之一。 层次聚类应用于传递 函数设定领域取得了较好的效果,然而,单处理机以其有限的运算能力和存储能力难以在有效的时间内完成规模较大的三维体数据的聚类分析,为此本文设 计实现了层次聚类并行算法,并将其与 LH 直方图相结合以指导传递函数的设定。 与串行算法相比,并行层次聚类算法能在合理的时间内对三维体数据进行聚类 分析,并以相同聚类效果完成对传递函数设定的指导,最终得到高质量的图像。另一方面,若将寻找合适的传递函数的过程视为参数优化问题,则可用全局 最优化的方法

9、来处理,遗传算法应用于传递函数的设定已有相当研究。本文将 粒子群算法以自动式和交互式两种进化方式应用于体绘制传递函数设定领域, 且在交互式实现方式中提出了基于用户的速度更新策略。与遗传算法相比,基 本型和改进型粒子群算法具有更好的性能,能使用户更快的得到更满意的体绘 制图像。 最后,在地震数据可视化系统中,将粒子群优化算法、手动调节和 多分辨率显示功能三者相结合,为用户提供了一个自动式与交互式相结合,具 有实时反馈功能的双层结构的传递函数设定工具,使地球物理学家用户在探索 地震数据的过程中更加灵活和便利,从而提高地震勘探的精确度和成功率。 体绘制是一种重要的三维数据场可视化方法,传递函数是体绘

10、制过程中用以定 出体数据与光学特征的对应关系的关键步骤,传递函数的设定对成像的质量具 有重要作用。然而传递函数的设定往往需要大量尝试,困难且不直观,寻找好 的传递函数已被列为体数据可视化中的十大难题之一。 层次聚类应用于传递 函数设定领域取得了较好的效果,然而,单处理机以其有限的运算能力和存储 能力难以在有效的时间内完成规模较大的三维体数据的聚类分析,为此本文设 计实现了层次聚类并行算法,并将其与 LH 直方图相结合以指导传递函数的设定。 与串行算法相比,并行层次聚类算法能在合理的时间内对三维体数据进行聚类 分析,并以相同聚类效果完成对传递函数设定的指导,最终得到高质量的图像。另一方面,若将寻

11、找合适的传递函数的过程视为参数优化问题,则可用全局 最优化的方法来处理,遗传算法应用于传递函数的设定已有相当研究。本文将 粒子群算法以自动式和交互式两种进化方式应用于体绘制传递函数设定领域, 且在交互式实现方式中提出了基于用户的速度更新策略。与遗传算法相比,基 本型和改进型粒子群算法具有更好的性能,能使用户更快的得到更满意的体绘 制图像。 最后,在地震数据可视化系统中,将粒子群优化算法、手动调节和 多分辨率显示功能三者相结合,为用户提供了一个自动式与交互式相结合,具 有实时反馈功能的双层结构的传递函数设定工具,使地球物理学家用户在探索 地震数据的过程中更加灵活和便利,从而提高地震勘探的精确度和

12、成功率。 体绘制是一种重要的三维数据场可视化方法,传递函数是体绘制过程中用以定 出体数据与光学特征的对应关系的关键步骤,传递函数的设定对成像的质量具 有重要作用。然而传递函数的设定往往需要大量尝试,困难且不直观,寻找好 的传递函数已被列为体数据可视化中的十大难题之一。 层次聚类应用于传递 函数设定领域取得了较好的效果,然而,单处理机以其有限的运算能力和存储 能力难以在有效的时间内完成规模较大的三维体数据的聚类分析,为此本文设 计实现了层次聚类并行算法,并将其与 LH 直方图相结合以指导传递函数的设定。 与串行算法相比,并行层次聚类算法能在合理的时间内对三维体数据进行聚类 分析,并以相同聚类效果

13、完成对传递函数设定的指导,最终得到高质量的图像。另一方面,若将寻找合适的传递函数的过程视为参数优化问题,则可用全局 最优化的方法来处理,遗传算法应用于传递函数的设定已有相当研究。本文将 粒子群算法以自动式和交互式两种进化方式应用于体绘制传递函数设定领域, 且在交互式实现方式中提出了基于用户的速度更新策略。与遗传算法相比,基本型和改进型粒子群算法具有更好的性能,能使用户更快的得到更满意的体绘 制图像。 最后,在地震数据可视化系统中,将粒子群优化算法、手动调节和 多分辨率显示功能三者相结合,为用户提供了一个自动式与交互式相结合,具 有实时反馈功能的双层结构的传递函数设定工具,使地球物理学家用户在探

14、索 地震数据的过程中更加灵活和便利,从而提高地震勘探的精确度和成功率。 体绘制是一种重要的三维数据场可视化方法,传递函数是体绘制过程中用以定 出体数据与光学特征的对应关系的关键步骤,传递函数的设定对成像的质量具 有重要作用。然而传递函数的设定往往需要大量尝试,困难且不直观,寻找好 的传递函数已被列为体数据可视化中的十大难题之一。 层次聚类应用于传递 函数设定领域取得了较好的效果,然而,单处理机以其有限的运算能力和存储 能力难以在有效的时间内完成规模较大的三维体数据的聚类分析,为此本文设 计实现了层次聚类并行算法,并将其与 LH 直方图相结合以指导传递函数的设定。 与串行算法相比,并行层次聚类算

15、法能在合理的时间内对三维体数据进行聚类 分析,并以相同聚类效果完成对传递函数设定的指导,最终得到高质量的图像。另一方面,若将寻找合适的传递函数的过程视为参数优化问题,则可用全局 最优化的方法来处理,遗传算法应用于传递函数的设定已有相当研究。本文将 粒子群算法以自动式和交互式两种进化方式应用于体绘制传递函数设定领域, 且在交互式实现方式中提出了基于用户的速度更新策略。与遗传算法相比,基 本型和改进型粒子群算法具有更好的性能,能使用户更快的得到更满意的体绘 制图像。 最后,在地震数据可视化系统中,将粒子群优化算法、手动调节和 多分辨率显示功能三者相结合,为用户提供了一个自动式与交互式相结合,具 有

16、实时反馈功能的双层结构的传递函数设定工具,使地球物理学家用户在探索 地震数据的过程中更加灵活和便利,从而提高地震勘探的精确度和成功率。 体绘制是一种重要的三维数据场可视化方法,传递函数是体绘制过程中用以定 出体数据与光学特征的对应关系的关键步骤,传递函数的设定对成像的质量具 有重要作用。然而传递函数的设定往往需要大量尝试,困难且不直观,寻找好 的传递函数已被列为体数据可视化中的十大难题之一。 层次聚类应用于传递 函数设定领域取得了较好的效果,然而,单处理机以其有限的运算能力和存储 能力难以在有效的时间内完成规模较大的三维体数据的聚类分析,为此本文设 计实现了层次聚类并行算法,并将其与 LH 直方图相结合以指导传递函数的设定。 与串行算法相比,并行层次聚类算法能在合理的时间内对三维体数据进行聚类 分析,并以相同聚类效果完成对传递函数设定的指导,最终得到高质量的图像。另一方面,若将寻找合适的传递函数的过程视为参数优化问题,则可用全局 最优化的方法来处理,遗传算法应用于传递函数的设定已有相当研

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 经济/贸易/财会 > 经济学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号