系数估计徐庆华重点参考

上传人:xzh****18 文档编号:46658504 上传时间:2018-06-27 格式:PDF 页数:10 大小:56.12KB
返回 下载 相关 举报
系数估计徐庆华重点参考_第1页
第1页 / 共10页
系数估计徐庆华重点参考_第2页
第2页 / 共10页
系数估计徐庆华重点参考_第3页
第3页 / 共10页
系数估计徐庆华重点参考_第4页
第4页 / 共10页
系数估计徐庆华重点参考_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《系数估计徐庆华重点参考》由会员分享,可在线阅读,更多相关《系数估计徐庆华重点参考(10页珍藏版)》请在金锄头文库上搜索。

1、TAIWANESE JOURNAL OF MATHEMATICS Vol. 15, No. 5, pp. 2377-2386, October 2011 This paper is available online at http:/tjm.math.ntu.edu.tw/index.php/TJMCOEFFICIENT ESTIMATES FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS OF COMPLEX ORDERQing-Hua Xu, Ying-Chun Gui and H. M. Srivastava*Abstract. In this p

2、aper, we introduce and investigate each of the following subclasses:Sg(,) and Kg(,m;u)? 0?1;uR (,1; m N 1?of analytic functions of complex order C 0, g : U C being some suitably constrained convex function in the open unit disk U.We obtain coefficient bounds and coefficient estimates involving the T

3、aylor-Maclaurin coefficients of the function f(z) when f(z) is in the class Sg(,) or in the class Kg(,m;u). The various results, which are presented in this paper, would generalize and improve those in related works of several earlier authors.1. INTRODUCTION, DEFINITIONS ANDPRELIMINARIESLet C be the

4、 set of complex numbers andN = 1,2,3, = N0 0be the set of positive integers. We also let A denote the class of functions of the form:f(z) = z +?n=2anzn,(1)which are analytic in the open unit diskU = z : z Cand|z| 0(z U; C:= C 0).Furthermore, a function f(z) A is said to be in the class C() of convex

5、 functions of complex order if it satisfies the following inequality:(3)? 1 +1 ?zf?(z)f?(z)? 0(z U; C).The function classesS()and C()were investigatedearlierby Nasr and Aouf 14 (see also 15) and Wiatrowski 20, respectively, and (more recently) by Altintas et al. (1 to 10), Deng 11, Murugusundaramoor

6、thy and Srivastava 13, Srivastava et al. 19, and others (see, for example, 12 and 18). For two functions f and g, analytic in U, we say that f(z) is subordinate to g(z) in U and we write f g or, more precisely,f(z) g(z)(z U)if there exists a Schwarz function w(z), analytic in U withw(0) = 0and|w(z)|

7、 0(z U). We denote by Sg(,) the class of functions given by(8)Sg(,)=? f :fA and 1+1 ?zf?(z)+z2f?(z) zf?(z)+(1 )f(z)1? g(U) (zU)?(0 ? ? 1; C).2380Qing-Hua Xu, Ying-Chun Gui and H. M. SrivastavaDefinition 4. A function f A is said to be in the class Kg(,m;u) if it satisfies the following nonhomogenous

8、 Cauchy-Euler differential equation:zmdmw dzm+?m1? (u + m 1)zm1dm1w dzm1+ +?mm? wm1?j=0(u + j)= h(z)m1?j=0(u+ j + 1)(9)?w = f(z) A; h(z) S g(,); u R (,1; m N?.Remark 1. There are many choices of the function g(z) which would provide interesting subclasses of analytic functions of complex order C. In

9、 particular, if we let(10)g(z) =1 + Az 1 + Bz(1 ? B A ? 1; z U),it is fairly easy to verify that g(z) is a convex function in U and satisfies the hypotheses of Definition 3. Clearly, therefore, the function class Sg(,), with the function g(z) given by (10), coincides with the function class S(,A,B)

10、given by Definition 1.Remark 2. In view of Remark 1, if the function g(z) is given by (10), it is easily observed that the function classesSg(,)andKg(,m;u)reduce to the aforementioned function classesS(,A,B)andK(,A,B,m;u),respectively (see Definitions 1 and 2). In this paper, by using the subordinat

11、ion principle between analytic functions, we obtain coefficient bounds for the Taylor-Maclaurin coefficients for functions in the substantially more general function classesSg(,)andKg(,m;u)of analytic functions of complex order C. The various results presented here would generalize and improve the c

12、orresponding results obtained by (for example) Srivastava et al. 17.2. MAINRESULTS ANDTHEIRDERIVATIONSIn order to prove our main results, we will need the following lemma due to Rogosinski 16.Coefficient Estimates for Certain Subclasses of Analytic Functions of Complex Order2381Lemma (see 16). Let t

13、he function g(z) given byg(z) =?k=1bkzk(z U)be convex in U. Also let the function f(z) given byf(z) =?k=1akzk(z U)be holomorphic in U. Iff(z) g(z)(z U),then(11)|ak| ? |b1|(k N).Our first main result is now stated as Theorem 3 below.Theorem 3. Let the function f(z) be defined by (1). If f Sg(,), then

14、(12)|an| ?n2?k=0(k + |g?(0)| |)(n 1)!1 + (n 1)(n N).Proof.Let the function F(z) be defined byF(z) = zf?(z) + (1 )f(z)(z U).Then, clearly, F(z) is an analytic functionin U, F(0) = 1,and a simplecomputation shows that the function F(z) has the following Taylor-Maclaurin series expansion:F(z) = z +?j=2

15、Ajzj(z U),(13)where, for convenience,Aj= (1 + j)aj(j N).(14)Now, from Definition 3, we have1 +1 ?zF?(z) F(z) 1? g(U).Also, by setting2382Qing-Hua Xu, Ying-Chun Gui and H. M. Srivastavap(z) = 1 +1 ?zF?(z)F(z) 1? ,(15)we deduce thatp(0) = g(0) = 1andp(z) g(U)(z U).Therefore, we have p(z) g(z)(z U). Thus, according to the above Lemma based upon the principle of subordination between analytic functions, we obtain?p(m)(0) m!? |g?(0)|(m N).(16)On the other hand, we find from (15) thatzF?(z) =?1 + p(z) 1?F(z)(z U).(1

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号