论文——高中物理生活中的力学问题在教学中的应用

上传人:j****9 文档编号:46041565 上传时间:2018-06-21 格式:DOC 页数:8 大小:177.97KB
返回 下载 相关 举报
论文——高中物理生活中的力学问题在教学中的应用_第1页
第1页 / 共8页
论文——高中物理生活中的力学问题在教学中的应用_第2页
第2页 / 共8页
论文——高中物理生活中的力学问题在教学中的应用_第3页
第3页 / 共8页
论文——高中物理生活中的力学问题在教学中的应用_第4页
第4页 / 共8页
论文——高中物理生活中的力学问题在教学中的应用_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《论文——高中物理生活中的力学问题在教学中的应用》由会员分享,可在线阅读,更多相关《论文——高中物理生活中的力学问题在教学中的应用(8页珍藏版)》请在金锄头文库上搜索。

1、论文论文高中物理生活中的力学问题在教学中的应用高中物理生活中的力学问题在教学中的应用摘要:摘要:本文从物理模型、实例应用两方面对日常生活中的质点力学、刚体力学、流体力学的例子进行分析和讨论。旨在让学生明白物理学的基础性,也使力学教学贴近生活,走进生活;亦可增强物理教学的趣味性,激发学生的学习兴趣,提高学习的积极性和主动性。关键词:关键词:日常生活 物理模型 实例应用 STS物理学是一门基础学科,是现代科学技术的基础,物理知识在现代生活、社会生产、科学技术中有广泛的应用。力学是与日常生活关系最密切的物理学科之一,可以说在我们日常生活中,力学几乎无处不在。人们的衣食住行处处都与力学有着紧密的联系。

2、本文从质点力学、刚体力学、流体力学的物理机理分析日常生活中的力学问题,以及物理学与社会的联系,说明物理教学与实践的关系,使力学教学贴近生活,走进生活。以求激发学生的学习兴趣,达到更好的教学效果;提高学生分析问题和解决问题的能力;提高学生科学文化素质;为将来的创新打下一定的基础1。1 质点力学教学质点力学教学11 物理模型物理模型在很多实际问题中,物体的形状和大小与所研究的问题无关或者所起的作用很小,我们就可以在尺度上把它看作一个几何点,而不必考虑它的形状和大小,它的质量可以认为就集中在这个点上,这种抽象化的模型,叫做“质点”。例如,研究行星绕太阳运动时,虽然行星本身很大,但是它的半径比起它绕太

3、阳运动的轨道半径却小得多,因此我们在这些问题中就可以把行星看作质点。但在研究它们(例如地球)自转时,就不能把它们看作质点了。在一般情况下,一切物体都可以看作是质点的集合,所以,研究力学一般都从质点力学开始。质点力学是力学研究的基础,在中学阶段物理课程中的力学部分也是建立在质点力学的基础上的。如:牛顿定律、动量定理、动量守恒定理、动能定律、动能守恒定律、力矩、势能等等2。12 实例应用实例应用121 走或跑的受力情况走或跑时,人体受的外力包括空气阻力、作用于身体总质心的重力以及地面支撑脚的力(简称为支撑反力) 。支撑反力是地面对人脚的总的作用,它是竖直向上的压力与水平方向的静摩擦力的合力。许多人

4、认为水平方向的静摩擦力就是使人前进的外力。其实,人的走动并不等同于一个物体的平移,人体的总质心还在不断地上、下运动,正压力也会起加速作用。因此,静摩擦力并不是全部的起加速作用的外力。全面地说,起加速作用的外力是地面作用于支撑脚的支撑反力。为研究问题的方便,可以把支撑反力看成是体重反力与蹬地反力的合力。体重反力是指由于人体具有静态重量而产生的那一部分地面对脚的作用力,其大小总是等于体重,方向总是竖直向上,蹬地反力的大小取决于人以多大的力蹬地,方向则与人蹬地的方向相反。在脚刚落地至蹬地前的缓冲动作中,脚向前下方蹬地,蹬地反力斜向后图1(a) ,因此支撑反力也斜向后,对人的前进起制动作用,使人体减速

5、。而在蹬地动作中,脚向后下方蹬地,蹬地反力斜向前图1(b) ,因此支撑反力也斜向前,对人体起加速作用。走和跑是我们每个人每天都在做的活动,但在以前的教学中对其的力学分析不够透彻。通过该实例在教学中的应用,并对其进行比较全面的分析。既可使学生能理解相关的物理知识,也使学生学会如何用所学的物理分析问题,这样做的好处是可以提高学生分析问题的能力。也使力学教学贴近生活,走进生活。122神奇的劈和楔人们把刀、斧等切割工具的刃部叫作劈,而一头厚一头薄的斜面木料叫做楔。劈能轻而易举地劈开坚硬的物体,楔可使物体间接触得更紧密。古代有这样一个传说,明朝年间,苏州的虎丘寺塔因年久失修,塔身倾斜,有倒塌的危险。当时

6、,有人建议用大木柱将其撑住,可这样又大煞风景。不久,有一位和尚把木楔一个一个地从塔身倾斜的一侧的砖缝里敲进去,结果扶正了塔身,试分析原因。图 楔的受力图解析:解析:因为楔的纵截面是一个三角形,使用它们的时候,在其背上加一个力,这个力产生的效果,就是楔(劈)的两个侧面形成两个推压物体的力,在力的作用下,楔把物体楔紧。设它们的纵截面是一等腰三角形,楔宽,它们的侧面长度是 ,如图2所示。由相似三角形可得,所以若三角形的顶角为,则有,即,综上所得:由此可知,当一定时,越小,就越大,因此,越薄的楔就越容易钉进物体里。显然,和尚正 是利用了质点力学中力的分解原理解决了生活中遇到的这一大难题。这个小小的实例

7、虽然所涉及到的物理知识难度不大,但力的合成和分解教学是安排在高一课程中,学生的物理知识积累并不多,而且对力的分解与合成也是初步涉及。如果在课堂之中应用该实例进行教学,可以使学生对力的合成和分解的作用之大有着很深刻的印象,并对该知识点有较深刻的理解,有助于教师教学和学生学习。2 刚体力学教学刚体力学教学21 物理模型物理模型刚体是一种特殊的质点组,这种特殊的质点组具有这样的性质:就是其中任何两个质点间的距离不因力的作用而发生改变,这种特殊的质点组叫做刚体。刚体和质点一样,也是从实际物体中抽象出来的,是一种理想化的模型,在所研究的问题中,只有当物体的大小和形状的变化可以忽略不计时,才可以把它当作刚

8、体看待3。22 实例应用:汽车急刹车时的受力分析实例应用:汽车急刹车时的受力分析质量为的汽车在水平路面上急刹车,前、后轮均停止转动,前后轮相距,与地面的摩擦系数为,汽车质心离地面高度为,与前抡轴水平距离为 ,试分析前后轮对地面的压力。图 汽车急刹车时的受力图解析:解析:把汽车模型化为刚体,以此为隔离体。汽车受力如图3,和、分别代表重力和地面支持力;因前后轮均停止转动,故和均为滑动摩擦力。根据质心运动定理:在地面上建立直角坐标系,将上试向轴投影:因为滑动摩擦力为:,建立平动的质心系。应用对质心轴的转动定理,得:由上面方程可解出:根据牛顿第三定律,前后轮对地面的压力大小分别为、但方向朝下。讨论:若

9、汽车静止于水平地面上,则地面对前后抡支撑力为:综上计算结果比较可知,刹车时前轮受到的压力比静止时大,并造成汽车的前倾。汽车加速时则后倾4。汽车是日常生活中必不可少的交通工具,学生对车可以说都是非常熟悉,但是其中的力学机理知道甚少,该实例应用是以题型的形式给出,这样既可以让学生对所学知识(刚体的概念,质心轴的转动定理,质心运动定理等)有比较深刻的理解,还能通过该实例的分析提高学生分析和处理问题的能力。3 生活中的流体力学问题生活中的流体力学问题31 物理模型物理模型物质的自然存在形式有三种:固体、液体和气体。后两种形式的物质又称流体。流体是没有固定形状、容易迁移和变形的物质,在静止状态只能承受压

10、力而不能承受拉应力和剪应力。运动的流体存在微小拉应力和剪应力是由于流体的分子相对运动引起的,而不是可以人为施加的。宏观平衡状态下的流体不能承受拉应力和剪应力,是流体区别于固体的根本标志。流体可以发生形状和大小的变化,这一点和弹性体类似,但流体主要具备体积压缩弹性,例如用力推活塞一压缩密闭气缸中的气体,在撤消外力后,气体将恢复原状,将活塞推出310。32 实例应用实例应用321 足球转弯之迷足球场上发任意球时,有的球员可以发出拐弯的香蕉球真让人叹为观止。为什么足球会在空中沿弧线飞行呢?我们应当了解到踢出的足球在行进过程中除向前运动外本身还有自身的自旋。假设空气不流动,足球向右运动,同时从上向下看

11、还有绕竖直轴逆时针的方向自旋(图4) ,如果以球为参照物,则空气相对球向左运动,同时,由于球的自旋,球表面粗糙,靠近球表面有一层空气被球带动而作同一方向的旋转,结果在球的左、右两侧的、两部分空气相对于球的运动速度不等(图5) ,其中部分的速度大于部 分的速度。图 自旋行进足球受力分析图根据流体力学的伯努利方程左右两侧处于同一高度:由于,故得出图 足球弧线进球图、两部分的压强不等使左、右两侧之间产生了压力差,形成了一个指向面的合力,才导致球的运动轨迹发生了偏转。假使合力产生了加速度,在 时间内偏离原直线距离为,又运动学 知识,所以位移的大部分发生在后一段时间里(图6) ,这就导致了我们视觉上总以

12、为球是在球门前突然转弯飞如球门的6。现在的学生有很大一部分对足球很感兴趣,把该实例应用于教学中首先就可以抓住很多学生的心,让他们注意力集中,提高学生学习的兴趣;其次也可使学生对教学中所要求的知识点做比较全面的理解;提高教学的综合水平。322 沙尘飞扬的力学分析(1)物体在流体中运动时的阻力当物体在粘滞性流体中运动时,物体将受到流体的阻力作用,在相对运动速率不大时,这种阻力主要来自于流体的粘滞力,并称为粘滞阻力。由于在流体中物体表面附着有一层流体,这层流体随物体一起运动,在物体表面周围的流体中必然形成一定的速度梯度,从而在各流层之间产生内摩擦力,阻碍物体的相对运动。英国力学家、数学家斯托克斯(G

13、eorge Gabriel Stokes 18191903)于1851年提出球形物体在粘性流体中作较慢运动时受到的粘滞阻力的大小由下式决定,式中为流体的粘滞系数,它与流体性质和温度有关,为球体的半径,为球体相对于流体的速度。 (说明:表达式只对球体相对于流体的速度较小时近似成立)如果让质量为,半径为的小球在静止粘滞流体中受重力作用竖直下落,它将受到如图7所示三个力的作用:重力;流体浮力;粘滞阻力,这三个力作用在同一直线上。起初,小球速度小,重力大于其余两个力的合力,小球向下作加速运动;随着速率的增加,粘滞阻力也相应增大。当小球速率增大到一定数值时(极限速率) ,小球作匀速运动,此时作用于小球上

14、的重力与浮力和粘滞力相平衡。如果流体密度为,小球密度为,小球速率为,则有下面的关系:由此可求得小球下落的极限速率为:若流体为空气,它在标准状况下,粘性系数=18010-5 Pas,假设小球(沙尘)的密度是20103kg/m3(远大于空气密度1293kg/m3)重力加速度为98m/s2。代入上式可得:=24108r2m/s当小球的半径为110-7m 时,小球下落的极限速率为2410-6m/s;小球的半径为110-4m,小球下落的极限速率为24m/s;而当小球的半径为 l10-3m 时,小球下落的极限速率为24102m/s。可见,小球下落的极限速率与其半径的平方成正比,半径越大,下落的极限速率就越

15、大。从上面讨论还可看出极限速率与小球密度有关,密度大相应的极限速率也越大。(2)沙尘飞扬的原因根据上述分析,我们来讨论地面上沙尘是怎样被扬起成为风沙的。由于沙尘在风力作用下运动时,颗粒的浓度较稀,且颗粒所受约束较少,所以,可忽略颗粒与颗粒之间的相互作用,可以用单颗粒的运动模型来描述沙尘颗粒的有关运动特性,即将沙尘颗粒视为“小球”。上面讨论过半径为 r 物体在静止流体中运动时的阻力,而风沙的形成则必须考虑当流体(空气)处于流动状态时的情形,因此上面计算得到的极限速率应理解为沙尘相对于流动空气的极限速率,沙尘相对空气的速率只能小于或等于极限速率。 前面分析已知,对于粒径不同的沙尘,极限速率差异很大

16、。对粒半径很小的尘埃,也很小,易被加速,空气的任何轻微流动,上升气流的速度分量都可以超过它的极限速率,导致其随风起动,甚至人在屋里走动所带动的空气扰动,也会使它飞扬起来。这就是“为什么风一刮,总是有一批细小的尘埃随风起舞,飞扬起来”的原因。而且,这样的尘埃一旦处于空中,靠其自然降落到地面需要相当长的时间。对粒半径较大的沙粒,则不容易被风加速,颗粒很难随风起动。这表明沙尘是否起动,风速的大小是一个主要因素,而且风速越大,沙粒随风起动的可能性就越大。沙尘物理学中,把干燥沙尘临界起动风速定义为起沙风速。在我国,根据主要沙区的观测和统计分析,起沙风速被确定为10m/s。气象中把浮尘、扬沙与沙尘暴统称沙尘天气。浮尘天气是由于高空中的风力较大,从其他地方携带来颗粒较细小的细沙、粉尘等物质所形成,相当于大气中尘埃的影响,其能见度通常大于1Okm;扬沙与沙尘暴都是由于本地或附近尘沙被风吹起而造成的,特点是天空混浊,能见度明显下降,沙尘暴天气能见度甚至小于1km。由于极限速率

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号