中南大学最优控制课件

上传人:101****457 文档编号:45919936 上传时间:2018-06-20 格式:PDF 页数:41 大小:1.02MB
返回 下载 相关 举报
中南大学最优控制课件_第1页
第1页 / 共41页
中南大学最优控制课件_第2页
第2页 / 共41页
中南大学最优控制课件_第3页
第3页 / 共41页
中南大学最优控制课件_第4页
第4页 / 共41页
中南大学最优控制课件_第5页
第5页 / 共41页
点击查看更多>>
资源描述

《中南大学最优控制课件》由会员分享,可在线阅读,更多相关《中南大学最优控制课件(41页珍藏版)》请在金锄头文库上搜索。

1、1 Modern Control Theory Optimal Control ( An undergraduate optional course ) Hui PENG Department of Automation School of Information Science Stochastic optimal control; Adaptive optimal control; Optimal control of large-scale systems; Suboptimal control; Optimal control sensitivity; Multi-goal optim

2、al control; Differential games; 1.1 Overview 9 Applied fields of optimal control Control engineering; Space technology; System engineering; Economic management; Financial engineering; 1.1 Overview 10 Some basic courses for studying optimal control Advanced math Linear algebra Automatic control theor

3、y (classical) Linear control system (state-space method) 1.1 Overview References (books) Optimal Control, F. L. Lewis and V. L. Syrmos, John Wiley 3) (Quasi-) Newton method; 4) Gauss-Newton method; 5) Levenberg-Marquardt method; 6) Sequential quadratic programming; 7) Goal attainment method (for mul

4、tiobjective optimization); 8) Genetic or evolutionary programming algorithm (Shi et al. 1999 ); 9) Hybrid algorithm (McLoone et al. 1998 ); 10) Variable separation method (Golub 11) Structured nonlinear parameter optimization method (Peng et al. 2002, 2003). 21 Contents Chapter 1 Introduction Chapte

5、r 2 Static Optimization Chapter 3 Variational Methods Chapter 4 The Pontryagin Minimum Principle Chapter 5 Discrete-Time Optimal Control Chapter 6 Dynamic Programming Chapter 7 Minimum Time Optimal Control Chapter 8 Linear-Quadratic Optimal Control 22 Chapter 2 Static Optimization (Function Extremum

6、) 2.1 Problems without constraints 2.2 Problems with equality constraints 2.3 Problems with inequality constraints 2.4 Convex sets and functions 23 Problems without constraints 2.1 Problems without constraints Performance index: 12( ), parameter vectornnJF xRx xxRx Assuming that F(x) has first and s

7、econd partial derivatives everywhere, then F(x) can be approximated in the neighborhood of by the first three terms of the Taylor series: The problem is to find x that minimizes J. 0023 0000021( )()2TTxxFFF xF xxxxxxxxxxx0x24 The gradient of F(x): 2.1 Problems without constraints 121grad ( )( )xnnF

8、xFFxF xF xFxF x The Hessian of F(x): 22211121222 221222222212nxxnnnnnn nFFF x xx xx xFFFFFxxxxxxxFFF xxxxxx 25 Necessary condition for an extremum: 2.1 Problems without constraints 002000021( )()2TTxxFFF xF xxxxxxxxxgrad ( )( )0xFF xF xFx Sufficient condition for a local minimum: 220, is positive de

9、finite (all eigenvalues positive)xxxxFFFxSufficient condition for a local maximum: 220, is negtive definite (all eigenvalues negtive)xxxxFFFxTaylor expansion: 26 Example: unconstraint extremum in one variable 2.1 Problems without constraints 27 Chapter 2 Static Optimization (Function Extremum) 2.1 P

10、roblems without constraints 2.2 Problems with equality constraints 2.3 Problems with inequality constraints 2.4 Convex sets and functions 28 Problems with equality constraints 2.2 Problems with equality constraints Performance index: ( , ) . . ( , )0, , , mnnJF x u s tg x uFRxRuRgR The method of Lag

11、range multipliers: The problem is to find x and u that minimizes J subject to g(x,u)=0. Necessary condition for an extremum: 00TTFFdFdxduxu ggdgdxduxu 29 The Jacobian assumption: 2.2 Problems with equality constraints From necessary condition for an extremum: 1111222212120nnnnnnn nggg xxxggggxxxxggg

12、 xxx 11100 0TTT TTTTTTFFdFdxduxuFggFFFggduuxxuuxuxggdxduxuFFg xx 1110 00, 0TTTTTTT TTT T TgFFggdxxxxxxxFg FFFFFgxx Fgxuxxux uu Assuming that: 30 The method of Lagrange multipliers 2.2 Problems with equality constraints Define the Lagrange function: 00( , )0T TTT TTLFg xxx LFg uuu Lg x u Suppose perf

13、ormance index is ( , )s.t. ( , )=0, , , nnmJF x u g x uFRxRuRgR( , )( , ), Lagrange multipliersnTLF x ug x uR, ,min( , ) then min( , )( , ) s.t. ( , )=0Tx ux uJF x u LF x ug x u g x uNecessary condition for a extremum: 31 The method of Lagrange multipliers in general case 2.2 Problems with equality

14、constraints Define the Lagrange function: 0( )0T TTLFg xxx Lg xSuppose performance index is ( ) s.t. ( )=0, , , nmJF x g xFRxRgRnm( )( ), Lagrange multipliersTmLF xg xR,min( )then min( )( ) s.t. ( )=0TxxJF xLF xg x g xNecessary condition for a extremum: 32 Example (1): constrained maximization for two variables and one constrain

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号