动力电池充放电过程详解

上传人:ths****59 文档编号:45055033 上传时间:2018-06-15 格式:DOCX 页数:4 大小:75.57KB
返回 下载 相关 举报
动力电池充放电过程详解_第1页
第1页 / 共4页
动力电池充放电过程详解_第2页
第2页 / 共4页
动力电池充放电过程详解_第3页
第3页 / 共4页
动力电池充放电过程详解_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

《动力电池充放电过程详解》由会员分享,可在线阅读,更多相关《动力电池充放电过程详解(4页珍藏版)》请在金锄头文库上搜索。

1、动动力力电电池池充充放放电电过过程程详详解解2018 年,新能源汽车领域硝烟四起,长续航成为各家车企竞相争夺国内市场的重型武器。各大车企都在以超长续航的新款车来招揽需求越来越高端的众多消费者。2 月底,腾势 500 正式亮相; 3 月底,吉利正式推出帝豪 EV450 新款车型;4 月初,比亚迪一口气推出秦 EV450、e5 450、宋 EV400 三款新车型,续航均在 400 公里以上。但是从技术角度来讲,动力电池才是核心,才是决定电动汽车拥有超长续航能力的关键。以交流慢充和直流快充两种充电方式为例,正确、合适的使用方式不仅能够最大限度地发挥动力电池的动力,而且可以延长电池的使用寿命。从知识普

2、及的角度,在动力电池现有能量密度技术水平基础上,有必要让消费者了解动力电池的充放电过程,各电池材料对充放电能力的影响,从而培养正确的使用习惯,延长动力电池的使用寿命,确保电动汽车的持续长久续航。充放电 电子互逃目前,各大电动汽车企业使用的比较盛行的动力电池类型主要有两种,一是磷酸铁锂电池,二是三元锂电池。然而不论是哪一种电池,其充电的过程大致可以以下四个阶段,即恒流充电阶段、恒压充电阶段、充满阶段、浮充充电阶段。在恒流充电阶段,充电电流保持恒定,充入电量快速增加,电池电压也随之上升。到了恒压充电阶段,顾名思义,充电电压会保持恒定,虽然充入电量会继续增加,但是电池电压上升缓慢,充电电流也会下降。

3、到了电池充满阶段,充电电流下降到低于浮充转换电流,充电器充电电压降低到浮充电压。在浮充充电阶段,充电电压会保持为浮充电压。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表示,而负极用插入或脱插表示)。在整个充电过程中,正极上的电子会通过外部电路跑到负极上,正锂离子Li+从正极穿过电解液,穿过隔膜材料,最终到达负极,并在此停留与 “驻地”的电子结合在一起,被还原成 Li 镶嵌在负极的碳素材料中。资料显示,作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子嵌入到碳层的微孔中,嵌入的锂离子越多,充电

4、容量也就越高。相反,当电池放电时(即使用电池的过程),镶嵌在负极碳素材料中的Li失去电子,负极上的电子通过外部电路 “运动”到正极上,正锂离子 Li+从负极越过电解液,越过隔膜材料,到达正极,并与 “驻地”的电子电子结合在一起。同样,返回正极的锂离子越多,放电的容量也就越高。保效率 四大材料在动力电池充放电过程中,各类关键性材料(比如正极材料、负极材料、隔膜、电解液等)各起到哪些作用?第一是正极材料,就正极材料而言,其活性物质一般为锰酸锂或钴酸锂,镍钴锰酸锂等材料,主流产品多采用锂铁磷酸盐。第二是负极材料,负极材料大体分为碳负极、锡基负极、锂过渡金属氮化物负极、合金类负极、纳米级负极、纳米材料

5、这几种。其中,实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。就纳米氧化物材料而言,据悉,根据2009 年锂电池新能源行业的市场发展最新动向,一些公司已经开始使用纳米氧化钛和纳米氧化硅添加在传统的石墨,锡氧化物,纳米碳管里面,极大地提高锂电池的充放电量和充放电次数。第三是电解质溶液,通常采用锂盐,如高氯酸锂(LiClO4)、六氟磷酸锂(LiPF6)、四氟硼酸锂 (LiBF4)等。由于电池的工作电压远高于水的分解电压,因此锂离子电池常采用有机溶剂,但是有机溶剂常常在充电时破坏石墨的结构,导致其剥脱,并在其表面形成固体电解质膜导致电

6、极钝化。而且还可能带来易燃、易爆等安全性问题。第四是隔膜,作为电池的关键零部件之一,隔膜性能的优势决定电池的界面结构和内阻,进而影响电池的容量、循环性能,充放电电流密度等关键特性。一般而言,常用的隔膜有单层和多层隔膜等几种类型。据了解,国产的一些公司会选稍厚一点的隔膜,部分企业使用的隔膜厚度有的达到31 层。由于隔膜生产较高的技术门槛,国内锂离子电池隔膜技术与国外尚有一些差距。资料显示,隔膜是一种特殊成型的高分子薄膜,薄膜有微孔结构,在吸收电解液后,可隔离正、负极以防止短路。同时给锂离子电池提供实现充放电功能、倍率性能的微孔通道,实现锂离子的传导。在电池过充或者温度变化较大时,隔膜通过闭孔来阻隔电流传导以防止爆炸。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号