示波器基础知识

上传人:kms****20 文档编号:41043079 上传时间:2018-05-28 格式:DOC 页数:14 大小:38KB
返回 下载 相关 举报
示波器基础知识_第1页
第1页 / 共14页
示波器基础知识_第2页
第2页 / 共14页
示波器基础知识_第3页
第3页 / 共14页
示波器基础知识_第4页
第4页 / 共14页
示波器基础知识_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《示波器基础知识》由会员分享,可在线阅读,更多相关《示波器基础知识(14页珍藏版)》请在金锄头文库上搜索。

1、示波器基础知识示波器基础知识示波器基础知识欢迎进入广播爱好者网站 欢迎进入广播爱好者论坛 器材交易论坛原有信息: 短消息 搜索 个人资料 返回 序 号:611503标 题:示波器基础知识 (5980 字)发信人:chengy时 间:2004-12-7 18:26:02阅读次数:75详细信息:14 水平偏转 时基为了描绘一幅图形,我们必须要有水平和垂直两个方向的信息。示波器描绘轨迹表明信号随时间的变化情况,因此其水平偏转必须和时间成正比。示波器中控制水平偏转,即 X 轴的系统称为时基。在示波器里有一个精确的扫描发生器。它使得电子束以精确的、用户可选择的速度在屏幕上扫描。时基发生器的输出示于图6。

2、图 6 时基发生器的输出波形。图中示出扫描时间、回扫时间和隔离停止(Hold-off)时间扫描速度以每格的秒数(s/格)来度量。一台典型示波器的扫描速度范围可以从 20ns/格到 0。5s/格。扫描速度也和灵敏度控制一样按 125 的序列变化。只要我们知道了每个标尺格所代表的时间值,就可以测量出屏幕扫迹上任何两点之间的时间例如,图 7 和图 8 显示的都是 1kHz 的正弦波(其周期为1ms),而扫描速率分别为 1ms/格和 200ms/格。 (us=微秒 10-6) 。图 7 1kHz 的正弦波,时基设置为 1ms/格图 8 1kHz 的正弦波,时基设置为 200s/格水平位置控制 水平或

3、X 轴位置控制机构 XPOS 可以在屏幕上沿水平方向移动扫迹。这样我们就可以把扫迹上的某一点和某一条垂直标尺线对齐,以便为时间测量规定一个起始点。可变时基我们可以选择不同于标准的 125 序列设置值的扫描速度。这样我们就能够把任意一个波形的一个周期调整成模跨整个屏幕宽度。和在 Y 轴方向使用 VAR 控制机构的情况一样多数示波器会给出指示,说明正在使用可变时基,X 轴处于未校准状态。更先进的示波器,如我们用作示例的示波器,可以工作在校准的连续可变时基模式。这时由于可以用整个屏幕来显示信号中我们感兴趣的部分,所以能获得更好的测量时间分辨率。同时也能大大减少发生操作错误的可能性。时基放大时基放大功

4、能通常能将 X 轴偏转扫描放大 10 倍。这样在屏幕上看到的等效时基速度也变快 10 倍。所以一台未经时基放大的时扫描速度为 20ns/格的示波器经时基放大后可以以 2ns/格的速度扫描。示波器屏幕现在就成了信号上的一个可移动的观察窗口。和简单的直接选择更快的时基速度相比,这种方法的好处是能够在保持原信号不变的情况下更加详细的观察信号的细节。图 9 说明如何使用 X 轴位置控制来实现信号的滚动显示。图 9 时基放大和 X 轴位置控制双时基 在很多观察复杂信号波形的应用场合中,往往需要显示一个波形的一小部分,并使它占踞整个屏幕。这种情况的一个典型的例子是观察研究全部电视信号中某一选定的行的波形。

5、在这类情况中,使用标准时基通过正常触发的方法是无能为力的。这就是在现代示波器上采用双时基工作的原因。在这个例子中,示波器的主时基(MTB)可由波形中的主触发事件,即全电视信号中的垂直同步信号来触发。MTB 扫迹的一部分显示得更亮一些,这称为加亮部分。在此加亮部分的起始点时刻,第二个时基,称为延迟时基或 DTB 开始扫描。这第二个时基可按自己的扫描速度来设置。并且扫描速度比主时基的扫描速度要快。主时基的起始点和加亮部分开始点之间的延迟时间是可调的。我们甚至可以作到在选定的延迟时间结束时不启动 DTB 扫描,而只是在该时刻为 DTB 时基的触发电路作好触发准备。如果过一会儿再发生新的触发事件,DT

6、B 扫描即将开始。所以,使用双时基时,电子束将以两个时基的两种不同的速度交替的在屏幕上扫描。让我们来看图 10。首先主时基以 500s/格的速度运行,在屏幕上描绘出一个波形。在此扫描期间,过了 2ms 即等于 4 格的时间以后,扫迹被加亮。这段延迟时间由延迟 1 控制来设定。波形上加亮部分的时间长度则由 DTB 扫描时间控制机构来高定,在我们的例子中现在为 50s/格当经过 2ms 的延迟时间后延迟时基进行扫描时,它只显示原来主时基扫迹的十分之一。但是这段原来主进基扫迹十分之一的波形段则在整个屏幕上显示出来。图 10 双时基工作(500s/格及 50s 格,4 格延迟)1)在老式的示波器上,延

7、迟控制指的是延迟时间倍增器。边是一个带有刻度的多圈电位器。当扫迹的加亮部分在 MTB 上根据需要确定位置以后,其延迟即可由 DTB 时基速度和该电位器示出的刻度读数相乘而计算出来。由此延迟控制一词得名。当我们改变延迟时间时,就改变了延迟时基扫描的起始点在主时基上的位置。而改变延迟时基扫描速度则改变在主时其上显示出来的波形段的长度。当延迟时基已经设置好,并显示出欲观察的信号段时,我们可以把主时基关闭。这样可以使得延迟扫迹变得更亮。典型双时基示波器的时基工作模式有:MTBI只用主时基只用 MTB 工作时,示波器的性能和单时基示波器相同。MTB主时基加亮这时示波器只显示主时基。但是扫迹上的一部分被加

8、亮,以表示出 DTB 的起始位置及其扫描速度。MTB 加亮和 DTB和 MTBI 相同,但也同时显示 DTB 扫描。DTB延迟时基。只显示 DTB 扫描。在本书的触发部分还会进一步讨论双时基的问题。时基模式时基电路有几种工作。对普通模拟示波器来说,工作模式有自动、正常或触发以及单次或单次捕捉等模式。正常模式 时基必须受到触发才能产生扫迹。其规律非常简单,即“没有信号就没有扫描轨迹“。示波器在选定的触发源通道上必须有输入信号,并且该信号必须大到足以触发时基电路。如果没有输入信号,屏幕上就不会有扫描轨迹。自动模式 如果能在没有输入信号时也能看到扫迹。这将会是很有用的。在没有输入信号以进行触发时,自

9、动模式将使时基以低频率自由运行,从而在屏幕上产生扫迹。这使得用户可以设置扫迹的垂直位置,即如果信号仅为一直流电位的情况。单次模式当接收到触发信号时进基将进行扫描,并且将只扫描一次。对于每次触发事件都必须使时基电路作好触发准备(atm) 。不然的话,下面来的触发事件将不能启动时基扫描。对于不同的示波器,按动标有单次或复位的按钮就使得触发电路重新作好触发准备。为了避免在单次扫描工作时盲目猜测,现代示波器上可以用屏幕上显示出伏特数值或显示水平线的方式来显示出其触发电平值。15 触 发 我们已经看到在示波管上输入信号如何提供垂直偏转,时基如何给出水平偏转。但是我们如何保证在电子束扫过屏幕时每次都准确地

10、扫过相同的路径呢?解决这个问题的关键在于触发电路。如果没有触发电路,你在屏幕上看到的将会是具有随机起始点的很多波形杂乱重叠的图象。而触发电路的作用就在于保证每次时基在屏幕的扫描的时候,时基扫描都从输入信号上的一上精确确定的点开始。这个精确的扫描起始点则由下述控制因素来决定。图 11 无触发的信号波形触发源它决定触发信号从哪里获得。在多数情况下,触发信号来自输入信号本身。所以如果只使用一个通道,那么触发源就设置为该通道。如果使用多个通道,那么触发源可以从这些通道中选取。复合触发(Composite triggering)则是在显示不同的通道时轮流使用相应的通道触发。这对于显示频率不相关的信号时是

11、非常有用的。如果示波器具有外部触发输入端(Ext) ,那么它上面连接的信号则可驱动触发电路使示波器触发。如果要观测在电源频率或者源于电源频率系统的信号,那么电源触发功能可以提供电源触发的能力。这是观察与电源有关的干扰信号的好方法。触发电平触发电平控制机构设置选定触发源的信号欲使触发电路启动时基扫描所必须跨越的电压电平值。图 12 触发电平设置对显示波形的影响。图 13 视频行信号触发斜率触发斜率控制机构决定触发发生于触发源信号的上升沿(“正斜率“)或者下降沿(“负斜率“)触发耦合 用以决定选定的触发源信号送往触发电路的耦合方式 DC 耦合 触发源直接连到触发电路。AC 耦合 触发源通过一个串联

12、的电容连到触发电路。 峰()峰值电平(Level p()p)将触发电平控制机构的控制范围设置成略小于触发源信号的峰()峰值。在这种模式下不可能将触发电平设置为超出输入信号的值,所以只要有信号示波器总能触发。HF 抑制 使触发源信号通过低通滤波器以抑制其高频分量。这意味着既使一个低频信号中包含很多高频噪音,我们仍能使其按低频信号触发。 LF 抑制 使触发源信号通过一个高通滤波器以抑制其低频成分。这对于显示包含很多电源交流声的信号等情况是很有用的。TV 触发在这种模式下触发电平控制不起作用。这时示波器使用视频信号中的同步脉冲作为触发信号。TV 触发有两种模式:帧触发 TVF和行触发 TVLTVF每

13、一帧电视图象由两场组成。每一场则包含构成一个完整的帧所需行数的一半。在电视屏幕上两场信号交错显示以构成一帧的画面。采用这种技术减少了传送一个频道所需要的带宽并减小了画面的闪烁。在每一个场开始的时候都有一个特别的脉冲序列,称为帧同步脉冲。在 TVF 同步模式下,示波器就由帧同步脉冲来触发。现代示波器的触发控制可以区分第一场和第二场。TVL每一场包括若干行。每一行都由一个行同步脉冲即行同步信号开始。示波器可以由每一个行同步脉冲来触发,这样描绘出的各个行的波形将会重叠在一起。便用帧触发和双时基我们可以观察某一特定行的波形。我们还可以使用如象 Fluke 公司的示波器所具有的称为视频行选择器的特殊的附

14、件 PM8917 来观察某一特定的行。使用本书中用作示例的组合示波器时,我们可以使用示波器中内装的视频行计数器直接选定所需的行号(仅限于 PM3394A 系列示波器) 。触发隔离(Trigger Hold-off)有些信号具有多个可能的触发点。这种情况的一个很好的例子是图 14 中的数字信号。该信号虽然在较长的时间周期内是重复的,但是在短时间内情况则不然。为了更详细的观察少数个别脉冲,必须使用快速的扫描时基。但是这样一来每次扫描时显示出来的信号波形段就是变化不一的。为了解决这个问题,我们采用了触发隔离功能,即在各次扫描之间加入延迟时间,使得扫描的每次触发总是从相同的信号沿开始。图 14 复杀脉

15、冲的触发隔离应用延迟时基触发从本书前面的时基部分我们已经知道,在 MTB 扫描时基开始后经过一段延迟,DTB 开始扫描,即受到触发。此延迟时间从 MTB触发点开始计算。经过这段时间延迟后,DTB 实际上是由延迟系统启动的。这种模式称为 DTB 启动。和 MTB 类似,DTB 也可以按触发模式工作,示波器上设有相应的控制机构以设置 DTB 触发源、触发电平、触发率及耦合方式。这些控制机构与 MTBN 无关,自己独立工作。选择了这种设置方式后,当上述的延迟时间结束以后,DTB 就作好触发准备。而当输入信号上探测到新的触发事件时 DTB 才被触发开始扫描。1.6 附加功能X-Y 偏转X-Y 偏转或

16、X-Y 模式是示波器的另一种显示方法。这种示波器将时基关闭,而用另一个与产生垂直偏转的信号不同的信号来使电子束在水平方向偏转。这就是说用两个信号在 X、Y 方向同时作用于电子束而描绘出波形,以便观察这两个信号的关系。这种方法最常见的用处是观察两信号间的相位关系。图 15 的图形称为李萨育图。这些图形是当使用互相成谐波频率关系的两个信号分别作 X 和 Y 偏转信号时产生的。如果所使用的两个信号没有相关的频率关系,则不会获得稳定的图形显示。对于使用具有固定频率关系的两个信号的情况来说,从显示的图形中还可以得两个信号间的相位关系。作为一个例子,图 16 给出了由具有相同频率而相位差分别为 0、45、90的两个信号所形成的图形。图 15 李萨育图,垂直偏转信号的频率为水平偏转信号频率的整倍数 图 16 李萨育图。 相同频率的两个信号加到垂直和水平偏转系统的情况。X-Y 用适当的传感器把物理量变换成示波器能显示的信号,就可显示两个物理量,例如位移和压力之间的关系。XY 显示模式还可以在电子学实验室用来进行元件测试工

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号