激光共聚焦显微镜的原理与应用范围

上传人:kms****20 文档编号:40490863 上传时间:2018-05-26 格式:DOC 页数:8 大小:34KB
返回 下载 相关 举报
激光共聚焦显微镜的原理与应用范围_第1页
第1页 / 共8页
激光共聚焦显微镜的原理与应用范围_第2页
第2页 / 共8页
激光共聚焦显微镜的原理与应用范围_第3页
第3页 / 共8页
激光共聚焦显微镜的原理与应用范围_第4页
第4页 / 共8页
激光共聚焦显微镜的原理与应用范围_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《激光共聚焦显微镜的原理与应用范围》由会员分享,可在线阅读,更多相关《激光共聚焦显微镜的原理与应用范围(8页珍藏版)》请在金锄头文库上搜索。

1、激光共聚焦显微镜的原理与应用范围激光共聚焦显微镜的原理与应用范围激光共聚焦显微镜的原理与应用范围激光扫描共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和 装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。把光学成像的分辨率提高了 30%40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代的研究工具。1 激光扫描共聚焦显微镜(LSCM)的原理从基本原理上讲,共聚焦显微镜是一种现代化的光学显微镜,它对普通光镜从技术上

2、作了以下几点改进:11 用激光做光源因为激光的单色性非常好,光源波束的波长相同,从根本上消除了色差。1 2 采用共聚焦技术在物镜的焦平面上放置了一个当中带有小孔的挡板,将焦平面以外的杂散光挡住,消除了球差;并进一步消除了色差1 3 采用点扫描技术将样品分解成二维或三维空间上的无数点,用十分细小的激光束(点光源)逐点逐行扫描成像,再通过微机组合成一个整体平面的或立体的像。而传统的光镜是在场光源下一次成像的,标本上每一点的图像都会受到相邻点的衍射光和散射光的干扰。这两种图像的清晰度和精密度是无法相比的。14 用计算机采集和处理光信号,并利用光电倍增管放大信号图在共聚焦显微镜中,计算机代替了人眼或照

3、相机进行观察、摄像,得到的图像是数字化的,可以在电脑中进行处理,再一次提高图像的清晰度。而且利用了光电倍增管,可以将很微弱的信号放大,灵敏度大大提高。由于综合利用了以上技术。可以说是显微镜制作技术、光电技术、计算机技术的完美结合,是现代技术发展的必然产物。2 在生物医学研究中的应用目前,一台配置完备的在功能上已经完全能够取代以往的任何一种光学显微镜,它相当于多种制作精良的常用光学显微镜的有机组合,如倒置光学显微镜、紫外线显微镜、荧光显微镜、暗视野显微镜、相差显微镜()、微分干涉差显微镜()等,因此被称为万能显微镜,通过它所得到的精细图像可使其他的显微镜图像无比逊色。21 观察活细胞、活组织在不

4、损伤细胞的前提下,对活组织、活细胞进行观察和测量,这不仅省去了繁琐的样品前期处理过程(如脱水、脱蜡、染色等);而且观察过的样品还可以继续用于其他的研究。这种功能对于细胞培养、转基因研究尤为重要。这可以说是最大的优势。22 生化成分精确定位观察配合专用的分子探针,对于要检测的成分不仅可以定位到细胞水平,还可以定位到亚细胞水平和分子水平23 动态观察在同一样品平面上随时间进行连续扫描,就可分析细胞结构、内含、和标记等动力学变化。目前在这方面做得最多的是使用观察心肌或平滑肌细胞内游离钙、钠、钾离子浓度或的动态变化。24 数据、图像的数字化用计算机代替了普通的照相机,得到的图像是数字化的,可及时输出或

5、长期储存,而且还可进一步加工处理。25 定量测量首先应用专一的荧光探针对样品进行染色,样品的荧光强度和所测成分的含量呈正比,如果其余条件固定,通过对比各组样品之间的荧光强度值,可得出特定成分的含量比。3 激光扫描共聚焦显微镜的使用(cAMP 在体测量为例)31 样品制备311 切片 实验标本要求单层,并能很好地贴附在样品池中。所以,组织标本无论是石蜡切片还是冰冻切片,均为越薄越好。常用的贴附剂有:多聚赖氨酸,伴刀豆球蛋白,蛋清,琼脂明胶 cell-Tak, vectabond 等。312 培养细胞 培养细胞可以满足要求,如果用购置仪器时所带的薄底培养瓶进行培养则更佳313 激光共聚焦观察样品处

6、理注意事项首先要尽量保持生物材料的天然状态,避免赝像、变形和失真,因此须将生物材料做固定处理;制片必须薄而透明,才能在显微镜下成像,除将材料切成薄片或通过轻压或其他手段使之分散外,还需采用其他方法使它透明和染色,以便更好地观察到结构的细节。需长期保存的制片,还应进行脱水和封固。 显微制片法一般包括切片法、整体封片法、涂片法和压片法 4 类。32 荧光探针的选择荧光探针的发展非常迅速,目前仅美国 Molecular Probes 公司就可提供 1800 多种荧光探针3,每年该公司还不断推出新的荧光探针。通常每项检测内容或被测物质都有几种或几十种有关的或特异的荧光探针。选择合适的荧光探针是有效地进

7、行实验并获取理想实验结果的保障。荧光探针的选择主要从以下几个方面考虑:(1)现有仪器所采用的激光器。如我校购进的激光扫描共聚焦显微镜(ACAS ULTMA312,美国 Meridian 公司产品)采用氩离子激光器,激发波长为 351364nm,488nm,514nm,可激发多种荧光探针;(2)荧光探针的光稳定性和光漂白性。在进行荧光定量和动态荧光监测时,要求荧光探针有较好的光稳定性越高越好,也可通过减少激光扫描次数或降低激光强度的方法,来减轻光漂白的程度。但在进行膜流动性或细胞间通讯检测时则需要荧光探针既有一定的光稳定性又要有一定的光漂白性;(3)荧光的定性或定量。仅做荧光定性或仅是观察荧光动

8、态变化时,选择单波长激发探针,无需制作工作曲线。做定量测量时最好选用双波长激发比率探针,利于制定工作曲线;(4)荧光探针的特异性和毒性。尽量选用毒性小、特异性高的探针;(5)荧光探针适用的 pH。大多数情况下细胞的 pH 在生理条件下,但当 pH不在此范围时,考虑适用该环境 pH 的荧光探针是有必要的。同时应注意染液自身的 pH 值会影响带电荷的荧光探针与胞内组份之间的结合,因此在染液的配备时需加以考虑。不同的荧光探针在不同标本的效果常有差异,除综合考虑以上因素以外,有条件者应进行染料的筛选,以找出最适的荧光探针。此外,许多荧光探针是疏水性的,很难或不能进入细胞,需使用其乙酰羟甲基酯(acet

9、oxymethyl,AM)形式,也就是荧光探针与 AM 结合后变成不带电荷的亲脂性化合物方易于通过质膜进入细胞,在细胞内荧光探针上的 AM 被非特异性酯酶水解,去掉 AM 后的荧光探针不仅可与细胞内的靶结构或靶分子结合且不易透出质膜,从而能有效的发挥作用。321 细胞内游离钙美国分子公司提供的钙荧光探针有 20 多种,激光扫描共聚焦显微镜常用的有 Fluo-3、Rhod-1、Indo-1、Fura-2 等,前两者为单波长激光探针,利用其单波长激发特点可直接测量细胞内 Ca2+动态变化,为钙定性探针;后两者为双波长激发探针,利用其双波长激发特点和比率技术,能定量细胞内Ca2+i,为钙定量探针32

10、2 DNA 和 RNA核酸的荧光探针有 50 多种2 ,用于激光扫描共聚焦显微镜的主要有 Acridine Orange(吖啶橙,AO)、Propidium Iodide(碘化丙啶,PI)。323 膜电位DiBAC4(3)为最常用的膜电位荧光探针5 ,DiBAC4(3)为带负电荷的阴离子慢反应染料。该探针本身无荧光,当进入细胞与胞浆内的蛋白质结合后才发出荧光,测量时要求细胞浸在荧光染料中。当细胞内荧光强度增加即膜电位增加示细胞去极化;反之,细胞内荧光强度降低即膜电位降低示细胞超极化。Rhodamine 123 主要用于线粒体膜电位测量6 。Rhodamine123 是一种亲脂性阳离子荧光探针,

11、当线粒体膜内侧负电荷增多时,荧光强度增加,与 DiBAC4(3)的表示形式相反。324 pH 值常用于偏中性 pH 即细胞胞浆 pH 检测的荧光探针有 SNARF 类(SNARF-1SNARF-calcein)、SNAFL 类(SNAFL-1、SNAFL-calcein)、BCECF 等,这些探针均为疏水性探针,需使用其 AM 形式。FITC-dextran 则适用于 pH 范围 46 之间7 ,如溶酶体 pH 的检测,该探针也不能透过质膜,但可通过细胞胞饮作用进入溶酶体,因此应选择分子量稍小的 Dextran(葡聚糖)。325 细胞内活性氧基活性氧(active oxygen species

12、)可影响细胞代谢,与蛋白质、核酸、脂类等发生反应,有些反应是有害的,因此测量活性氧在毒理学研究中有一定的意义。根据检测活性氧的不同可选择不同的荧光探针。常用荧光探针有 Dichlorodihydrof-luorescein diacetate(2,7-二氯二氢荧光素乙酰乙酸、H2DCFDA)2 ,其原理是不发荧光的H2DCFDA 进入细胞后能被存在的过氧化物、氢过氧化物等氧化分解为 dichlorofluorescein(DCF)而产生荧光,其反应灵敏到 10-12mole 水平,荧光强度与活性氧的浓度呈线性关系。326 细胞间通讯激光扫描共聚焦显微镜可采用荧光光漂白恢复 FRAP 技术检测细

13、胞缝隙连接通讯,该方法的原理是一个细胞内的荧光分子被激光漂白或淬灭,失去发光能力。而临近未被漂白细胞中的荧光分子可通过缝隙连接扩散到已被漂白的细胞中,荧光可以逐渐恢复。由于光漂白过程是不可逆的,因此可通过观察已发生荧光漂白细胞其荧光恢复过程的变化量来判断细胞缝隙连接的通讯功能。采用 FRAP 技术检测细胞间通讯常用荧光探针是 6-carboxyfluorescein diacetate(6-羧基荧光乙酰乙酸、CFDA)。需用其酯化形式 CFDA-AM。该技术可用于研究胚胎发生、生殖发育、神经生物学、肿瘤发生等过程中缝隙连接通讯的基本机制和作用。由于某些毒性物质尤是促癌物可影响缝隙连接介导的物质

14、运输,因此该方法也可用于鉴别对缝隙连接作用有潜在毒性的化学物质。327 细胞膜流动性采用荧光光漂白恢复(FRAP)技术还可对细胞膜流动性进行研究9 。利用 NBD-C6-HPC 荧光探针标记细胞膜磷脂,然后用高强度的激光束照射活细胞膜表面的某一区域(12m),使该区域的荧光淬灭或漂白,再用较弱的激光束照射该区域。可检测到细胞膜上其它地方未被漂白的荧光探针流动到漂白区域时的荧光重新分布情况。荧光恢复的速率和程度可提供有关的信息,如用于观察细胞受体介导内吞过程中膜磷脂流动性的变化情况。NBD-C6-HPC 在温度稍高时可能会进入细胞内,因此荧光染色和测量时应在低于常温的环境下进行。328 细胞结构

15、、受体、蛋白质、酶等激光扫描共聚焦显微镜可获得较一般普通光学显微镜分辨率高的细胞内线粒体、高尔基复合体、内质网、溶酶体等细胞器图象,同时还可动态观察活细胞状态下细胞器的形态学变化情况,此外还可通过光学切片即断层扫描技术进行三维重建,显示细胞器的空间关系及其变化。适用于线粒体的荧光探针较多,如 Mitotracker、DA SPMI、DA SPEI、JC-1、Rhodamine 123 等。高尔基复合体常用的荧光探针有 NBD ceramide、BODIPY ceramide。内质网主要用Dil、DiOC6(3)。溶酶体的荧光探针有 DAMP、neutral red。有报道选用 NBC-PC 标

16、记细胞膜、Mitotracker 标记线粒体、Hoechst 33342 标记细胞核 DNA,同时显示细胞的三部分结构。33 激光扫描共聚焦显微镜的使用331 根据标本选择的荧光探针对激发波长选择激光器类型。332 根据荧光探针的发射波长选择相应的滤片,K 凌镜无滤片扫描则不需要这一步。最好根据现有仪器配制选择荧光探针。333 根据实验目的选择合适当软件。一般仪器的软件分静息状态度图像分析软件、动态测量软件和特殊软件。334 按软件要求设置有关参数,进行观察和分析。4 激光扫描共聚焦显微镜的功能激光扫描共聚焦显微镜的功能主要分图像处理功能和细胞生物学功能两个方面41 图层处理功能411 组织光学切片:激光扫描共聚焦成像利用照明点与探测点共轭特性,可有效抑制同一焦点平面上非测量点的杂散荧光及来自样品中非焦平面的荧光,从而获得普通光镜无法达到的分辨率。同时具有深度识别率和纵向分辨率。它以一个微动步进马

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号