镍镉电池原理及充电方法

上传人:kms****20 文档编号:39661729 上传时间:2018-05-18 格式:DOC 页数:13 大小:161KB
返回 下载 相关 举报
镍镉电池原理及充电方法_第1页
第1页 / 共13页
镍镉电池原理及充电方法_第2页
第2页 / 共13页
镍镉电池原理及充电方法_第3页
第3页 / 共13页
镍镉电池原理及充电方法_第4页
第4页 / 共13页
镍镉电池原理及充电方法_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《镍镉电池原理及充电方法》由会员分享,可在线阅读,更多相关《镍镉电池原理及充电方法(13页珍藏版)》请在金锄头文库上搜索。

1、镍镉镍镉/ /镍氢电池的原理及充电方法镍氢电池的原理及充电方法作者:镍镉镍镉/ /镍氢电池的发展镍氢电池的发展 1899 年,Waldmar Jungner 在开口型镍镉电池中,首先使用了镍极板,几乎与 此同时,Thomas Edison 发明了用于电动车的镍铁电池。遗憾的是,由于当时 这些碱性蓄电池的极板材料比其它蓄电池的村料贵得多,因此实际应用受到了 极大的限制。 后来,Jungner 的镍镉电池经过几次重要改进,性能明显改善。其中最重要的 改进是在 1932 年,科学家在镍电池中开始使用了活性物质。他们将活性物质放 入多孔的镍极板中,然后再将镍极板装入金属壳内。镍镉电池发展史上另一个 重

2、要的里程碑是 1947 年密封型镍镉电池研制成功。在这种电池中,化学反应产 生的各种气体不用排出,可以在电池内部化合。密封镍镉电池的研制成功,使 镍镉电池的应用范围大大增加。 密封镍镉电池效率高、循环寿命长、能量密度大、体积小、重量轻、结构紧凑, 并且不需要维护,因此在工业和消费产品中得到了广泛应用。 随着空间技术的发展,人们对电源的要求越来越高。70 年代中期,美国研制成 功了功率大、重量轻、寿命长、成本低的镍氢电池,并且于 1978 年成功地将这 种电池应用在导航卫星上,镍氢电池与同体积镍镉电池相比,容量可提高一倍, 而且没有重金属镉带来的污染问题。它的工作电压与镍镉电池完全相同,工作 寿

3、命也大体相当,但它具有良好的过充电和过放电性能。近年来,镍氢电池受 到世界各国的重视,各种新技术层出不穷。镍氢电池刚问世时,要使用高压容 器储存氢气,后来人们采用金属氢化物来储存氢气,从而制成了低压甚至常压 镍氢电池。1992 年,日本三洋公司每月可生产 200 万只镍氢电池。目前国内已 有 20 多个单位研制生产镍氢电池,国产镍氢电池的综合性能已经达到国际先进 水平。 蓄电池参数蓄电池参数 蓄电池的五个主要参数为:电池的容量、标称电压、内阻、放电终止电压和充 电终止电压。电池的容量通常用 Ah(安时)表示,1Ah 就是能在 1A 的电流下放电 1 小时。单元电池内活性物质的数量决定单元电池含

4、有的电荷量,而活性物质 的含量则由电池使用的材料和体积决定,因此,通常电池体积越大,容量越高。 与电池容量相关的一个参数是蓄电池的充电电流。蓄电池的充电电流通常用充 电速率 C 表示,C 为蓄电池的额定容量。例如,用 2A 电流对 1Ah 电池充电,充 电速率就是 2C;同样地,用 2A 电流对 500mAh 电池充电,充电速率就是 4C。 电池刚出厂时,正负极之间的电势差称为电池的标称电压。标称电压由极板材 料的电极电位和内部电解液的浓度决定。当环境温度、使用时间和工作状态变化时,单元电池的输出电压略有变化,此外,电池的输出电压与电池的剩余电 量也有一定关系。单元镍镉电池的标称电压约为 1.

5、3V(但一般认为是 1.25V), 单元镍氢电池的标称电压为 1.25V。 电池的内阻决定于极板的电阻和离子流的阻抗。在充放电过程中,极板的电阻 是不变的,但是,离子流的阻抗将随电解液浓度的变化和带电离子的增减而变 化。 蓄电池充足电时,极板上的活性物质已达到饱和状态,再继续充电,蓄电池的 电压也不会上升,此时的电压称为充电终止电压。镍镉电池的充电终止电压为 1.751.8V,镍氢电池的充电终止电压为 1.5V。 表 1-1 镍镉电池不同放电率时的放电终止电压放电终止电压是指蓄电池放电时允许的最低电压。如果电压低于放电终止电压 后蓄电池继续放电,电池两端电压会迅速下降,形成深度放电,这样,极板

6、上 形成的生成物在正常充电时就不易再恢复,从而影响电池的寿命。放电终止电 压和放电率有关。镍镉电池的放电终止电压和放电速率的关系如表 1-1 所列, 镍氢电池的放电终止电压一般规定为 1V。 镍镉蓄电池的工作原理镍镉蓄电池的工作原理 镍镉蓄电池的正极材料为氢氧化亚镍和石墨粉的混合物,负极材料为海绵状镉 粉和氧化镉粉,电解液通常为氢氧化钠或氢氧化钾溶液。当环境温度较高时, 使用密度为 1.171.19(15时)的氢氧化钠溶液。当环境温度较低时,使用 密度为 1.191.21(15时)的氢氧化钾溶液。在-15以下时,使用密度为 1.251.27(15时)的氢氧化钾溶液。为兼顾低温性能和荷电保持能力

7、,密封 镍镉蓄电池采用密度为 1.40(15时)的氢氧化钾溶液。为了增加蓄电池的容 量和循环寿命,通常在电解液中加入少量的氢氧化锂(大约每升电解液加 1520g)。 镍镉蓄电池充电后,正极板上的活性物质变为氢氧化镍NiOOH,负极板上的 活性物质变为金属镉;镍镉电池放电后,正极板上的活性物质变为氢氧化亚镍, 负极板上的活性物质变为氢氧化镉。 1.放电过程中的电化学反应(1)负极反应 负极上的镉失去两个电子后变成二价镉离子 Cd2+,然后立即与溶液中的两个氢 氧根离子 OH-结合生成氢氧化镉 Cd(OH)2,沉积到负极板上。 (2)正极反应 正极板上的活性物质是氢氧化镍(NiOOH)晶体。镍为正

8、三价离子(Ni3+),晶 格中每两个镍离子可从外电路获得负极转移出的两个电子,生成两个二价离子 2Ni2+。与此同时,溶液中每两个水分子电离出的两个氢离子进入正极板,与晶 格上的两个氧负离子结合,生成两个氢氧根离子,然后与晶格上原有的两个氢 氧根离子一起,与两个二价镍离子生成两个氢氧化亚镍晶体。 将以上两式相加,即得镍镉蓄电池放电时的总反应: 2.充电过程中的化学反应 充电时,将蓄电池的正、负极分别与充电机的正极和负极相连,电池内部发生 与放电时完全相反的电化学反应,即负极发生还原反应,正极发生氧化反应。 (1)负极反应 充电时负极板上的氢氧化镉,先电离成镉离子和氢氧根离子,然后镉离子从外 电

9、路获得电子,生成镉原子附着在极板上,而氢氧根离子进入溶液参与正极反 应: (2) 正极反应 在外电源的作用下,正极板上的氢氧化亚镍晶格中,两个二价镍离子各失去一 个电子生成三价镍离子,同时,晶格中两个氢氧根离子各释放出一个氢离子, 将氧负离子留在晶格上,释出的氢离子与溶液中的氢氧根离子结合,生成水分 子。然后,两个三价镍离子与两个氧负离子和剩下的二个氢氧根离子结合,生 成两个氢氧化镍晶体: 将以上两式相加,即得镍镉蓄电池充电时的电化学反应: 蓄电池充电终了时,充电电流将使电池内发生分解水的反应,在正、负极板上 将分别有大量氧气和氢气析出,其电化学反应如下: 从上述电极反应可以看出,氢摒化钠或氢

10、氧化钾并不直接参与反应,只起导电 作用。从电池反应来看,充电过程中生成水分子,放电过程中消耗水分子,因 此充、放电过程中电解液浓度变化很小,不能用密度计检测充放电程度。 3. 端电压 充足电后,立即断开充电电路,镍镉蓄电池的电动势可达 1.5V 左右,但很快就 下降到 1.31-1.36V。 镍镉蓄电池的端电压随充放电过程而变化,可用下式表示: U 充=E 充+I 充 R 内U 放=E 放-I 放 R 内 从上式可以看出,充电时,电池的端电压比放电时高,而且充电电流越大,端 电压越高;放电电流越大,端电压越低。 当镍镉蓄电池以标准放电电流放电时,平均工作电压为 1.2V。采用 8h 率放电 时

11、,蓄电池的端电压下降到 1.1V 后,电池即放完电。 4. 容量和影响容量的主要因素 蓄电池充足电后,在一定放电条件下,放至规定的终止电压时,电池放出的总 容量称为电池的额定容量,容量 Q 用放电电流与放电时间的乘积来表示,表示 式如下: Q=It(Ah) 镍镉蓄电池容量与下列因素有关: 活性物质的数量; 放电率; 电解液。 放电电流直接影响放电终止电压。在规定的放电终止电压下,放电电流越大, 蓄电池的容量越小。 使用不同成分的电解液,对蓄电池的容量和寿命有一定的影响。通常,在高温 环境下,为了提高电池容量,常在电解液中添加少量氢氧化锂,组成混合溶液。 实验证明:每升电解液中加入 1520g

12、含水氢氧化锂,在常温下,容量可提高 4%5%,在 40时,容量可提高 20%。然而,电解液中锂离子的含量过多,不仅 使电解液的电阻增大,还会使残留在正极板上的锂离子(Li+)慢慢渗入晶格内 部,对正极的化学变化产生有害影响。 电解液的温度对蓄电池的容量影响较大。这是因为随着电解液温度升高,极板 活性物质的化学反应也逐步改善。 电解液中的有害杂质越多,蓄电池的容量越小。主要的有害杂质是碳酸盐和硫 酸盐。它们能使电解液的电阻增大,并且低温时容易结晶,堵塞极板微孔,使 蓄电池容量显著下降。此外,碳酸根离子还能与负极板作用,生成碳酸镉附着 在负极板表面上,从而引起导电不良,使蓄电池内阻增大,容量下降。

13、 5. 内阻镍镉蓄电池的内阻与电解液的导电率、极板结构及其面积有关,而电解液的导 电率又与密度和温度有关。电池的内阻主要由电解液的电阻决定。氢氧化钾和氢氧化钠溶液的电阻系数随密度而变。18时氢氧化钾溶液和氢氧化钠溶液的 电阻系数最小。通常镍镉蓄电池的内阻可用下式计算: 6. 效率与寿命 在正常使用的条件下,镍镉电池的容量效率 Ah 为 67%-75%,电能效率 Wh 为 55%65%,循环寿命约为 2000 次。容量效率 Ah 和电能效率 Wh 计算公式 如下: (U 充和 U 放应取平均电压)7. 记忆效应 镍镉电池使用过程中,如果电量没有全部放完就开始充电,下次再放电时,就 不能放出全部电

14、量。比如,镍镉电池只放出 80%的电量后就开始充电,充足电 后,该电池也只能放出 80%的电量,这种现象称为记忆效应。 电池全部放完电后,极板上的结晶体很小。电池部分放电后,氢氧化亚镍没有 完全变为氢氧化镍,剩余的氢氧化亚镍将结合在一起,形成较大的结晶体。结 晶体变大是镍镉电池产生记忆效应的主要原因。 镍氢电池的工作原理镍氢电池的工作原理 镍氢电池和同体积的镍镉电池相比,容量增加一倍,充放电循环寿命也较长, 并且无记忆效应。镍氢电池正极的活性物质为 NiOOH(放电时)和 Ni(OH)2(充 电时),负极板的活性物质为 H2(放电时)和 H2O(充电时),电解液采用 30% 的氢氧化钾溶液,充

15、放电时的电化学反应如下:从方程式看出:充电时,负极析出氢气,贮存在容器中,正极由氢氧化亚镍变 成氢氧化镍(NiOOH)和 H2O;放电时氢气在负极上被消耗掉,正极由氢氧化镍 变成氢氧化亚镍。 过量充电时的电化学反应: 从方程式看出,蓄电池过量充电时,正极板析出氧气,负极板析出氢气。由于 有催化剂的氢电极面积大,而且氢气能够随时扩散到氢电极表面,因此,氢气 和氧气能够很容易在蓄电池内部再化合生成水,使容器内的气体压力保持不变, 这种再化合的速率很快,可以使蓄电池内部氧气的浓度,不超过千分之几。 从以上各反应式可以看出,镍氢电池的反应与镍镉电池相似,只是负极充放电 过程中生成物不同,从后两个反应式

16、可以看出,镍氢电池也可以做成密封型结 构。镍氢电池的电解液多采用 KOH 水溶液,并加入少量的 LiOH。隔膜采用多孔 维尼纶无纺布或尼龙无纺布等。为了防止充电过程后期电池内压过高,电池中 装有防爆装置。 电池充电特性电池充电特性镍镉电池充电特性曲线如图 1 所示。当恒定电流刚充入放完电的电池时,由于 电池内阻产生压降,所以电池电压很快上升(A 点)。此后,电池开始接受电 荷,电池电压以较低的速率持续上升。在这个范围内(AB 之间),电化学反应 以一定的速率产生氧气,同时氧气也以同样的速率与氢气化合,因此,电池内 部的温度和气体压力都很低。 图 1 镍镉电池的充电曲线电池充电过程中,产生的氧气高于复合的氧气时,电池内压力升高。电池内的 正常压力*大约为 1 磅力/英寸 2。过充电时,根据充电速率,电池内部压力将 很快上升到 100 磅力/英寸 2 或者更高。 研究蓄电池的各种充电方法时,镍镉电池内产生的气体是一个重要问题。气泡 聚集在极板表面,将减小极板表面参与化学反应的面积并且增加电池的内阻。 过充电时,电池内产生的大量

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号