地震灾害受损水利工程案例及修复技术简述

上传人:jiups****uk12 文档编号:38472679 上传时间:2018-05-02 格式:DOC 页数:20 大小:222.70KB
返回 下载 相关 举报
地震灾害受损水利工程案例及修复技术简述_第1页
第1页 / 共20页
地震灾害受损水利工程案例及修复技术简述_第2页
第2页 / 共20页
地震灾害受损水利工程案例及修复技术简述_第3页
第3页 / 共20页
地震灾害受损水利工程案例及修复技术简述_第4页
第4页 / 共20页
地震灾害受损水利工程案例及修复技术简述_第5页
第5页 / 共20页
点击查看更多>>
资源描述

《地震灾害受损水利工程案例及修复技术简述》由会员分享,可在线阅读,更多相关《地震灾害受损水利工程案例及修复技术简述(20页珍藏版)》请在金锄头文库上搜索。

1、Page 1 of 21地震灾害受损水利工程案例及修复技术简述地震灾害受损水利工程案例及修复技术简述我国地处世界上两个最大地震集中发生地带环太平洋地震带与欧亚地震带之间,地震较多,大多是发生在大陆的浅源地震,震源深度在 20km 以内。位于青藏高原南缘的川滇地区,主要发育有北西向的鲜水河-安宁河-小江断裂、金沙江-红河断裂、怒江-澜沧江断裂和北东向的龙门山-锦屏山-玉龙雪山断裂等大型断裂带1.该区新构造活动剧烈,绝大多数属构造地震,地震活动频度高、强度大,是中国大陆最显著的强震活动区域2.而西南地区蕴藏了我国 68的水力资源,水利工程较多,且主要集中在川滇地区。据 2005 年数据,四川省有大

2、中小型水库约6000 余座3.2008 年 5 月 12 日的四川省汶川大地震,初步统计,已导致 803 座水库出险,受损的大型水库有紫坪铺电站和鲁班水库,中型水库 36 座,小一型水库 154 座,小二型水库 611 座3.此外,地震还致使湖北和重庆地区各 79 座水库出现险情4,5.为保证水利工程的安全运行,地震之后及时对水利工程进行检测,并对受损工程进行监测和修复是必要的。有关震灾受损水利工程修复方面的文献不多,散见于各种期刊或研究报告,为便于应用参考,本文搜集、Page 2 of 21筛选了一些震灾受损水利工程的案例,并对一些实用技术进行了介绍。由于地震烈度、地震形态以及水库本身工程质

3、量的不同,地震对于水利工程的危害也有所区别。高建国6对我国因地震受损水利工程进行分类整理,认为水库坝体险情主要可分为 3 级:1 级,一般性破坏,不产生渗漏;2 级,严重性破坏,坝体开裂渗漏;3 级,垮坝(崩塌),水库水全部流走。我国因地震引起的水库垮坝并不多见,总结国内外地震对水利工程的危害,主要有以下几种形式:2.1 坝体裂缝地震作为外力荷载将会导致大坝尤其是土石坝整体性降低,防渗结构破坏,引起大量裂缝。地震会产生水平和垂直两个方向的运动,并使周期性荷载增大,坝体和坝基中可能会形成过高的孔隙水压力,从而导致抗剪强度与变形模量的降低,引起永久性(塑性)变形的累积,进而导致坝体沉降与坝顶裂开。

4、2003 年 10 月甘肃民乐山丹 6.1 级地震引起双树寺水库大坝、翟寨子水库大坝,坝顶均出现一条纵向裂缝,长约 401560m,最大宽度 2cm 左右,并有多处不同长度断续裂缝,Page 3 of 21防浪墙局部错动约 0.5cm.大坝右侧出现山体滑坡,形成长条带及凹陷,滑坡长 37m 左右,凹陷坑深 2.53m、宽 7m 左右,凹陷处上部山体有多条斜向裂缝,缝宽 20cm 左右。李桥水库坝顶有纵向裂缝,多处缝宽在 25mm,其中一条长约 100m 左右,出现横向贯通裂缝,防浪墙出现多处竖向裂缝。这些裂缝在坝体漏水、自然降水和温度作用下,又将产生新的冻融、冻胀破坏,影响大坝的整体性和稳定7

5、.托洪台水库位于新疆布尔津县境内,1995 年被列为险库,1996年新疆阿勒泰地震(6.1 级),使拦水坝出现 10 处横向裂缝,3 处纵向裂缝,最宽处达 16cm,长 17m,防浪墙垂直裂缝 27 处。经评估,水库震后只能在低水位运行,致使发电系统瘫痪,同时对于下游构成潜在威胁6.岷江上的紫坪铺水利工程位于都江堰市与汶川县交界处,2006年投产,是中国实施西部大开发首批开工建设的十大标志性工程之一。2008 年 5 月 12 日的汶川地震造成紫坪铺大坝面板发生裂缝,厂房等其他建筑物墙体发生垮塌,局部沉陷,整个电站机组全部停机。3.此外,地震对泄水输水建筑物也将造成巨大危害。2003 年8 月

6、 16 日赤峰发生里氏 5.9 级地震,使沙那水库混凝土泄洪灌溉洞产生纵向裂缝,长 15m,最大裂缝 15mm;环向裂缝 22m,最大裂缝宽度 1.8mm;洞出口消力池两侧边墙产生竖向裂缝,总长 15m,Page 4 of 21最大裂缝宽度 25mm.大冷山水库溢洪道两侧导流墙产生裂缝,以纵向裂缝为主,最大缝宽 12mm8.2.2 坝体失稳地震可能引起坝基液化,从而导致大坝失稳。地震时,受到周期性或波动性荷载作用,土石坝内土体将产生递增的孔隙水压力和递增的变形。粘性土体构成的土石坝在地震中相对安全。但相对密度低于 75%的粉砂土和砂土,在几个循环之后孔隙水压力就会显著上升,当达到危险应力水平时

7、,土体在周期性荷载作用下显示出极大的变形位移,坝内土体就会呈现出液化的流态,导致坝体失稳9.喀什一级大坝 1982 年施工时,其坝体及防渗墙都未进行碾压,致使密实度降低,1985 年地震时,由于液化和沉陷,导致该坝整体失稳破坏。美国加州的 Sheffield 坝,1917 年建成,坝高 7.63m,坝顶宽6.1m,长 219.6m,水库库容 17 万立方米.1925 年 6 月距坝 11.2km处发生里氏 6.3 级地震,长约 128m 的坝中段突然整体滑向下游。事后,经调查研究发现,坝体溃决的主要原因是地震使饱和土内的孔隙水压力增大,造成坝下部和坝基内的细颗料无凝聚性土发生液化。Page 5

8、 of 21地震还会造成土石坝体脱落或堆石体沉陷,从而引起坝体失稳。在库水位较高的情况下,堆石体沉陷会造成坝体受力不均,更严重的会引起库水漫顶,引发坝体垮塌。1961 年 4 月13 日在距西克尔水库库区约 30km 处发生里氏 6.5 级地震,该水库位于 VIII 度区10,坝体出现了严重的堆石体沉陷现象,一段220m 长的坝体沉陷值达到 22.5m,崩塌范围在从坝轴线上游310m 到下游的 3550m11.前面述及的沙那水库土坝和朝阳水库因地震致使土坝排水体砌石脱落,经抗震复核下游坝坡不稳定8.2.3 岸坡坍塌若水库两岸有高边坡和危岩、松散的风化物质存在,地震发生后,造成的岩体松动,可诱发

9、产生崩塌、滑坡和泥石流,甚至形成堰塞湖等现象。乌江渡水库处于地震多发区,1982 年 6 月地震中,化觉乡东部厚层灰岩和白云岩地层中发生大面积崩塌。同年 8 月,化觉、柏坪一带又发生较大规模的地层滑动,影响面积约 18k 平方米12.5.12 汶川大地震造成四川多处山体滑坡,堵塞河道,形成 34 处堰塞湖。其中唐家山堰塞湖蓄水过 1 亿立方米,另外水量在 300 万立方米以上的大型堰塞湖有 8 处13,对下游地区造成严重威胁。Page 6 of 21另外,地震还可能对水利工程一些其它部分造成损坏。如 1995年 1 月日本阪神淡路 7.2 级地震14,15中,使堤防基础液化发生侧向流动,造成堤

10、防破坏以及护岸受损。我国历次地震中,出现较严重险情的多为土石坝,且多为年代较久远的土石坝,如果发生强地震就更容易造成损坏16.地震后受损水利工程修复措施主要包括以下几个方面:3.1 坝体监测地震后,对于受损水利工程,应及时降低水库运行水位,并进行充分的坝体探测。对土石坝,可开挖土坑检测,对混凝土坝,则可用无损探伤检测17.包括使用地震波法、地质雷达、水下声纳法检测侵蚀程度,必要时还需要采取槽探、钻孔、孔内地球物理方法进行检测。根据地震前后大坝监测结果的对比分析,判明是否存在普遍的结构损伤迹象。尤其需要加强对坝体变形和渗透的观测,防止裂缝前后贯通,内部发育,产生渗漏通道。同时,加强对输水洞漏水、

11、溢洪道裂缝的监测,以防渗漏进一步扩大18.震后坝体探测中,作为一种非破坏性的探测技术,地质雷达具有探测效率高、分辨率高、抗干扰能力强等特点,可以快捷、安全地运用于坝体现状检测和隐患探查19.Page 7 of 212003 年甘肃山丹地震后,利用地质雷达对双树寺、瞿寨子、瓦房城等水库的震后坝体裂缝、坝基渗透、溢洪道、高边坡开裂和库岸道路滑坡等进行了探测20,效果很好。3.2 裂缝修复对于已经出现的裂缝,要对其分布、走向、长度和开度等进行定时观测和检测。在大坝主裂缝部位设置标志,缝口要覆盖塑料布,防止雨水流入加速其恶化。对受洪水威胁的建筑物,要采取临时措施(如围堰)进行保护。裂缝的修补应从实际出

12、发,在安全可靠的基础上,同时考虑技术和施工条件的可行性,力求施工及时、简单易行、经济合理。常用的有以下几种处理方法:3.2.1 表面处理法表面处理法21主要适用于对结构承载能力没有影响或者影响很小的表面裂缝及深层裂缝,同时还可以处理大面积细裂缝的防渗防漏。常用的有表面涂抹水泥砂浆、表面涂抹环氧胶泥以及表面涂刷油漆、沥青等防腐材料等,从而达到封闭裂缝和防水的作用。在防护的同时应当采取在裂缝的表面粘贴玻璃纤维布等措施,这样可以防止混凝土在各种作用下继续开裂。3.2.2 灌浆法Page 8 of 21灌浆法主要应用于对结构整体有影响或有防水防渗要求的混凝土裂缝的修补。经修补后,能恢复结构的整体性和使

13、用功能,提高结构的耐久性。灌浆法22分水泥灌浆和化学灌浆。水泥灌浆适用于裂缝宽度达到 1mm 以上时的情况;裂缝较窄的情况下宜采用化学灌浆。此外,工程经验表明水泥浆适于稳定裂缝的灌浆处理,不适用于活缝或伸缩缝的处理。化学灌浆也存在类似问题,应用最广的环氧树脂浆固结体是脆性材料,因此对活缝应选用弹性材料。部分化学灌浆还有毒性,应加强施工人员的保护措施。大量实践证明,灌浆法是目前最有效的裂缝修补处理方法。3.2.3 结构加固法危及结构安全的混凝土裂缝都需作结构补强。结构加固法适用于对整体性、承载能力有较大影响的较深裂缝及贯穿性裂缝的加固处理。混凝土结构的加固,应在结构评定的基础上进行,以达到结构强

14、度加固、稳定性加固、刚度加固或抗裂性加固的目的。结构加固中常用的主要有以下几种方法:加大混凝土结构的截面面积,在构件的角部外包型钢、采用预应力法加固、粘贴钢板加固、增设支点加固以及喷射混凝土补强加固。结构加固法还适用于处理对结构的承载能力、整体性、耐久性有较大影响的不均匀沉陷裂缝和较为严重的张拉裂缝23.Page 9 of 213.3 滑坡处理土坝滑坡有剪切破坏、塑流破坏、液化破坏三种形式24.可采用“上部减载”与“下部压重”法来处理。“上部减载”就是在滑坡体上部的裂缝上侧削坡,以保持稳定:“下部压重”就是放缓下部坝坡,在滑坡体下部做压坡体等。当滑坡稳定后,应当及时进行滑坡处理17.主要处理方

15、法介绍如下:3.3.1 放缓坝坡若滑坡由于剪切破坏造成,则放缓坝坡为最好的处理方法。可填入土体将坝坡放缓,或是先削掉滑动面上坝顶的土体,使滑动面坝坡变缓,然后再加大未滑动面的断面24.对存在失稳危险的土石坝也可采用水上抛石法放缓上游坝坡,施工方法简单,且不受季节和水位的变化。加固工程不破坏原坝体结构,减去拆除原有的坝体护坡石和反滤料工序,对保护原坝体非常有利。石料渗透系数大,在库水位降落时,新筑部分的自由水面线,几乎与库水位重合,这样就造成新增断面和原有断面共同承担原有坝壳中库水位降落时产生的渗透水压力及地震产生的超隙孔压力,起到压重的作用,从而有利于大坝的稳定25.3.3.2 压重固脚Pag

16、e 10 of 21若滑坡体底部滑出坝趾以外,则需要在滑坡段下部采取压重固脚的措施,以增加抗滑力。压重固脚的材料最好用砂石料。在砂石料缺乏的地区,也可用土工织物,代替反滤,以达到排水的要求17.通过在坝体上加压盖重,或对坝体培厚加固处理,可以进一步提高防渗流土、坝体抗裂和抗渗性能,同时增加坝体稳定性。实例:1999 年山西大同堡村发生 5.6 级地震,对位于震中附近的册田水库造成 VII 度影响,坝体产生结构变形26.震后对主坝和北副坝下游坝坡采用石渣进行培厚加固处理。主坝所在 956m 高程以下石渣培厚体,坝坡分别为 1:2.75,在 956m 高程设 12m 宽的平台,在 949m 高程、940m 高程设 3.0m 宽的马道,并在石渣体与原坝体设置反滤层。培厚坝体后,即使再次遭遇地震,由于坝体在正常水位下(956m 高程)宽度增加,也可避免大坝整体失稳,从而保证大坝的安全27.3.3.3 库岸岩体加固对于地震中松动的库岸岩体,应采取工程

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号