汽轮机故障诊断技术的发展与展望

上传人:l****6 文档编号:37658487 上传时间:2018-04-20 格式:DOC 页数:7 大小:38.50KB
返回 下载 相关 举报
汽轮机故障诊断技术的发展与展望_第1页
第1页 / 共7页
汽轮机故障诊断技术的发展与展望_第2页
第2页 / 共7页
汽轮机故障诊断技术的发展与展望_第3页
第3页 / 共7页
汽轮机故障诊断技术的发展与展望_第4页
第4页 / 共7页
汽轮机故障诊断技术的发展与展望_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《汽轮机故障诊断技术的发展与展望》由会员分享,可在线阅读,更多相关《汽轮机故障诊断技术的发展与展望(7页珍藏版)》请在金锄头文库上搜索。

1、1汽轮机故障诊断技术的发展与展望摘要:回顾和总结了国内外汽轮机故障诊断技术的发展情况,指出了目前在汽轮机故障诊断研究中存在的问题,并从检测技术、故障机理等七个方面分析了今后可能取得进展的研究方向。关键词:汽轮机 故障诊断 监测0引言二十世纪以来,随着工业生产和科学技术的发展,机械设备的可靠性、可用性、可维修性与安全性的问题日益突出,从而促进了人们对机械设备故障机理及诊断技术的研究。汽轮发电机组是电力生产的重要设备,由于其设备结构的复杂性和运行环境的特殊性,汽轮发电机组的故障率不低,而且故障危害性也很大。因此,汽轮发电机组的故障诊断一直是故障诊断技术应用的一个重要方面。本文回顾国内外汽轮机故障诊

2、断的发展概况,并在总结目前研究状况的基础上,指出了在汽轮机故障诊断研究中存在的问题,提出了今后在这一领域的研究方向。1国内外发展概况早期的故障诊断主要是依靠人工,利用触、摸、听、看等手段对设备进行诊断。通过经验的积累,人们可以对一些设备故障做出判断,但这种手段由于其局限性和不完备性,现在已不能适应生产对设备可靠性的要求。而信息技术和计算机技术的迅速发展以及各种先进数学算法的出现,为汽轮机故障诊断技术的发展提供了有利的条件。人工智能、计算机网络技术和传感技术等已经成为汽轮机故障诊断系统不可缺少的部分。11国外发展情况2美国是最早从事汽轮机故障诊断研究的国家之一,在汽轮机故障诊断研究的许多方面都处

3、于世界领先水平。目前美国从事汽轮机故障诊断技术开发与研究的机构主要有 EPRI 及部分电力公司,西屋、Bently、IRD、CSI 等公司12。美国 Bechtel 电力公司于 1987 年开发的火电站设备诊断用专家系统(SCOPE)在进行分析时不只是根据控制参数的当前值,而且还考虑到它们随时间的变化,当它们偏离标准值时还能对信号进行调节,给出消除故障的建议说明,提出可能临近损坏时间的推测34。美国 Radial 公司于 1987 年开发的汽轮发电机组振动诊断用专家系统(Turbomac),在建立逻辑规则的基础上,设有表征振动过程各种成分与其可能故障源之间关系的概率数据,其搜集知识的子系统具有

4、人-机对话形式。该系统含有 9000 条知识规则,有很大的库容5。西屋公司(WHEC)是首先将网络技术应用于汽轮机故障诊断的,他们在已经开发出的汽轮发电机组故障诊断系统(AID)的基础上,在奥兰多建立了一个诊断中心(DOC),对分布于各地电站的多台机组进行远程诊断56。Bently 公司在转子动力学和旋转机械故障诊断机理方面研究比较透彻7。该公司开发的旋转机械故障诊断系统(ADR3)在中国应用情况良好,很受用户欢迎。日本也很重视汽轮机故障诊断技术的研究,由于日本规定 1000MW 以下的机组都须参与调峰运行,因此,他们更注重于汽轮机寿命检测和寿命诊断技术的研究。日本从事这方面研究的机构主要有东

5、芝电气、日立电气、富士和三菱重工等810。东芝电气公司与东京电力公司于 1987 年合作开发的大功率汽轮机轴系振动诊断系统,采用计算机在线快速处理振动信号的解析技术与评价判断技术,设定一个偏离轴系正常值的极限值作为诊断的起始点进行诊断11。九十年代,东芝公司相3继开发出了寿命诊断专家系统,针对叶片、转子、红套叶轮及高温螺栓的诊断探伤实时专家系统、机组性能评价系统等1217。日立公司在 1982 年开发了汽轮机寿命诊断装置 HIDIC-08E1819,以后逐步发展,形成了一套完整的寿命诊断方法2021。三菱公司则在八十年代初期开发了 MHM 振动诊断系统,该系统能自动地或通过人机对话进行异常征候

6、检测并能诊断其原因,其特点是可根据动矢量来确定故障22。欧洲也有不少公司和部门从事汽轮机故障诊断技术的研究与开发。法国电力部门(EDF)从 1978 年起就在透平发电机上安装离线振动监测系统,到九十年代初又提出了监测和诊断支援工作站(Monitoring and Diagnosis Aid Station)的设想2324。九十年代中期,其专家系统 PSAD 及其 DIVA 子系统在透平发电机组和反应堆冷却泵的自动诊断上得到了应用2528。另外瑞士的 ABB 公司、德国的西门子公司、丹麦的 BK 公司等都开发出了各自的诊断系统2931。12我国的发展情况我国在故障诊断技术方面的研究起步较晚,但是

7、发展很快。一般说来,经历了两个阶段:第一阶段是从 70 年代末到 80 年代初,在这个阶段内主要是吸收国外先进技术,并对一些故障机理和诊断方法展开研究;第二阶段是从 80 年代初期到现在,在这一阶段,全方位开展了机械设备的故障诊断研究,引入人工智能等先进技术,大大推动了诊断系统的研制和实施,取得了丰硕的研究成果。1983 年春,中国机械工程学会设备维修分会在南京召开了首次“设备故障诊断和状态监测研讨会“,标志着我国诊断技术的研究进入了一个新的发展阶段,随后又成立了一些行业协会和学术团体,其中和汽轮机故障诊断有关的主要有,中国设备管理协会设备诊断技术委员会、中国机械工程学会设备维修分会、中国振动

8、工程学会故障诊断学4会及其旋转机械专业学组等。这期间,国际国内学术交流频繁,对于基础理论和故障机理的研究十分活跃,并研制出了我国自己的在线监测与故障诊断装置,“八五“期间又进行了大容量火电机组监测诊断系统的研究,各种先进技术得到应用,研究步伐加快,缩小了与世界先进水平的差距3233,同时也形成了具有我国特点的故障诊断理论,并出版了一系列这方面的专著,主要有屈梁生、何正嘉主编的机械故障学34、杨叔子等主编的机械故障诊断丛书35、虞和济等主编的机械故障诊断丛书36、徐敏等主编的设备故障诊断手册等3750。目前我国从事汽轮机故障诊断技术研究与开发的单位有几十家,主要有哈尔滨工业大学、西安交通大学、清

9、华大学、华中理工大学、东南大学、上海交通大学、华北电力大学等高等院校和上海发电设备成套设计研究所、哈尔滨电工仪表所、西安热工研究所、山东电力科学试验研究所、哈尔滨船舶锅炉涡轮机研究所及一些汽轮机制造厂和大型电厂等。国家在“七五“、“八五“计划期间安排的汽轮机故障诊断攻关项目促进了一大批研究单位参与汽轮机故障诊断系统的研究与开发,许多重要成果都是在这一阶段取得的。2汽轮机故障诊断技术的发展21信号采集与信号分析211 传感器技术由于汽轮机工作环境恶劣,所以在汽轮机故障诊断系统中,对传感器性能要求就更高。目前对传感器的研究,主要是提高传感器性能和可靠性、开发新型传感器,另外也有相当一部分力量在研究

10、如何诊断传感器故障以减少误诊率和漏诊率,并且利用信息融合进行诊断。现行的对传感器自身故障检测技术主要有硬件冗余、解析冗余和混合冗余,由于5硬件冗余有其明显的缺点,因而在实际中应用较少。意大利 di Ferrara 大学的Simani.s 等人针对传感器故障,采用了解析冗余的动态观测器来解决透平传感器的故障检测问题51。加拿大 Windsor 大学的 Chen,Y.D 等人对传感器融合技术进行研究,并在实际中得到了应用52。Brunel 大学的 Harris,T 把神经网络技术应用于多重传感器的融合作为其研制的汽轮机性能诊断系统的技术关键53,Pennsylvania State Univ. 的

11、 Kuo,R.J 则应用人工神经网络,采用多传感器融合诊断叶片故障54。Prock,J 以及西安交通大学的谷立臣、上海交通大学的林日升等对传感器故障检测5556和伪参数识别技术开展了研究工作57。华中理工大学的王雪、申韬、西安交通大学的常炳国等在传感器信号的可靠性58和采用融合技术提高传感器可靠性5960方面也进行了研究。212 信号分析与处理最有代表性的是振动信号的分析处理。目前,汽轮机故障诊断系统中的振动信号处理大多采用快速傅立叶变换(FFT),FFT 的思想在于将一般时域信号表示为具有不同频率的谐波函数的线性叠加,它认为信号是平稳的,所以分析出的频率具有统计不变性。FFT 对很多平稳信号

12、的情况具有适用性,因而得到了广泛的应用61。但是,实际中的很多信号是非线性、非平稳的,所以为了提高分辨精度,新的信号分析与处理方法成为许多机构的研究课题。美国俄亥俄州立大学的Kim,Yong.W 等对传统的无参量谱分析、时-频分析、离散小波变换等作了较为深入的研究62。英国南安普敦大学的 Lee,S.K 认为,任意随意性的音响和振动信号都是由不规则冲击引起的,为此他提出了用三阶和四阶 Winger 谱来对这些信号进行分析63,同时还对信号中的噪声过滤提出了处理方法64。小波分析法的应用一直是国内外热门的研究课题6566,东南大学王善永把小波分析法用于汽轮机动静碰摩故障诊断67,华中理工大学张桂

13、才、东南大学王宁等把小波分析用于6轴心轨迹的识别6869。西安交通大学引入 Kolmogorov 复杂性测度定量评估大机组运行状态70,还对 FFT 进行改进并吸收全息谱的优点,进行轴心轨迹的瞬态提纯71,哈尔滨工业大学刘占生在轴心轨迹特征提取中采用一种新的平面图形加权编码法,提高了图形辨识的准确率72,华中理工大学李向东用降维法将轴心轨迹转化为一条角度波形,使之应用于轴心轨迹的聚类识别73。22故障机理与诊断策略221 故障机理故障机理是故障的内在本质和产生原因。故障机理的研究,是故障诊断中的一个非常基础而又必不可少的工作。目前对汽轮机故障机理的研究主要从故障规律、故障征兆和故障模型等方面进

14、行。由于大部分轴系故障都在振动信号上反映出来,因此,对轴系故障的研究总是以振动信号的分析为主。日立公司的 N.kurihara 给出了振动故障诊断用的特征矩阵74,清华大学褚福磊对常见故障在瀑布图上的振动特征和故障识别作了研究75。华中理工大学伍行健也提出了用于振动故障诊断的物理模型和数学模型76。西安交通大学陈岳东对振动频谱进行了模糊分类77,上海交通大学左人和从动力学的角度研究了典型故障的响应特征78。清华大学张正松用 Hopf 分叉分析法研究了油膜失稳涡动极限环特性79,哈尔滨工业大学毕士华对于如何识别油膜轴承的动态参数进行了研究80,江苏省电力试验研究所的彭达则对实际发生的油膜振荡问题

15、进行了剖析81。哈尔滨工业大学武新华分析了转轴弯曲的故障特征82。清华大学何衍宗、东南大学杨建刚研究了转子不平衡对其他征兆的影响8384。对于动静碰摩问题,EPRI 的 Scheibel,John.R、西安交通大学何正嘉、西安热工研究所施维新等分别从故障特性和诊断技术方面进行了研究8590,西安交通大学刘雄应用二维全息谱技术确定故障征兆91,东北电力学院石志标则从动力7学角度分析了摩擦问题92,哈尔滨工业大学提出了变刚度分段线性和非线性模型93,并通过实验对摩擦的噪声特性进行了研究94。在综合振动与噪声特性的基础上,东北电力学院还开发了可对旋转机械和摩擦进行在线监测的仪器,该仪器用四个通道进行

16、声信号检测,另外四个通道用于振动监测,可以大致确定摩擦的部位95。另外,李录平、张新江等对振动故障特征的提取进行了有益的研究9699。调节系统的可靠与否,对汽轮机组的安全运行具有非常重要的意义。哈尔滨工业大学的于达仁、徐基豫等在调节系统故障诊断方面作了很多研究工作,他们给出了调节系统卡涩和非卡涩原因造成故障的数学模型,并对诊断方法和诊断仪器的实现进行了探讨100104。华中理工大学何映霞、向春梅等研究了对 DEH 系统故障的诊断105106,东南大学的岳振军则把频域分析的 Bloomfield 模型引入时域,应用于调节系统在线监测107。 222 诊断策略和诊断方法在汽轮机故障诊断中用到的诊断策略主要有对比诊断、逻辑诊断、统计诊断、

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号