附录xixr药用辅料性能指标研究指导原则

上传人:ldj****22 文档编号:37107664 上传时间:2018-04-07 格式:PDF 页数:6 大小:285.62KB
返回 下载 相关 举报
附录xixr药用辅料性能指标研究指导原则_第1页
第1页 / 共6页
附录xixr药用辅料性能指标研究指导原则_第2页
第2页 / 共6页
附录xixr药用辅料性能指标研究指导原则_第3页
第3页 / 共6页
附录xixr药用辅料性能指标研究指导原则_第4页
第4页 / 共6页
附录xixr药用辅料性能指标研究指导原则_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《附录xixr药用辅料性能指标研究指导原则》由会员分享,可在线阅读,更多相关《附录xixr药用辅料性能指标研究指导原则(6页珍藏版)》请在金锄头文库上搜索。

1、 附录 XIX R 药用辅料性能指标研究指导原则 药用辅料是药物制剂的赋形剂和附加剂,对于药品的安全性、有效性、稳定性、可控性和依从性具有一定的影响。药用辅料按用途可以分为多个类别(见附录 II 药用辅料) ,为保证药用辅料在制剂中发挥其赋形作用和保证质量的作用, 在药用辅料的正文中设置适宜的性能指标(Functionality-related characteristics, FRCs)十分必要。性能指标的设置是针对特定用途的, 同一辅料按性能指标不同可以分为不同的规格, 使用者可根据用途选择适宜性能的药用辅料以保证制剂的质量。 本指导原则将按药用辅料的用途介绍常用的性能指标研究和建立方法。

2、 药用辅料性能指标主要针对一般的化学手段难以评价性能的药用辅料, 如稀释剂等十二大类; 对于纯化合物或性能可以通过相应的化学手段评价的辅料,如 pH 调节剂、渗透压调节剂、防腐剂、螯合剂、络合剂、矫味剂、着色剂、增塑剂、抗氧剂、抛射剂等,不在本指导原则中列举其性能评价方法。 (一)稀释剂 稀释剂也称填充剂,指制剂中用来增加体积或重量的成分。常用的稀释剂包括淀粉、蔗糖、乳糖、预胶化淀粉、微晶纤维素、无机盐类和糖醇类等。在药物剂型中稀释剂通常占有很大比例,其作用不仅保证一定的体积大小,而且减少主药成分的剂量偏差,改善药物的压缩成型性。稀释剂类型和用量的选择通常取决于它的物理化学性质,特别是性能指标

3、。 稀释剂可以影响制剂的成型性和制剂性能(如粉末流动性、湿法颗粒或干法颗粒成型性、含量均一性、崩解性、溶出度、片剂外观、片剂硬度和脆碎度、物理和化学稳定性等) 。一些稀释剂(如微晶纤维素)常被用作干黏合剂,因为它们在最终压片的时候能赋予片剂很高的强度。 稀释剂性能指标包括: (1)粒径和粒径分布(附录 E) ; (2)粒子形态(附录 E) ;(3)松密度/振实密度/真密度; (4)比表面积; (5)结晶性(附录 D 和附录 F) ; (6)水分(附录 L 和附录 M) ; (7)流动性; (8)溶解度; (9)压缩性; (10)吸湿性(附录 XIX J)等。 (二)黏合剂 黏合剂为处方中加入的

4、、在与制粒液体(如水,乙醇或者其他溶剂)混合过程中产生粘性,促进粉末聚集成颗粒的物质。黏合剂在制粒溶液中溶解或分散,有些黏合剂为干粉。随着制粒溶液的挥发,黏合剂使颗粒的各项性质(如粒度大小及其分布、形态、含量等)符2合要求。湿法制粒通过改善颗粒一种或多种性质,如流动性、操作性、强度、抗分离性、含尘量、外观、溶解度、压缩性或者药物释放,使得颗粒的进一步加工更为容易。 黏合剂可以被分为: (1)天然高分子材料; (2)合成聚合物;或者(3)糖类。聚合物的化学属性,包括结构、单体性质和聚合顺序、功能基团、取代度和交联度将会影响制粒过程中的相互作用。 同一聚合物由于来源或合成方法的不同, 它们的性质可

5、能显示出较大的差异。常用黏合剂包括淀粉浆、纤维素衍生物、聚维酮、明胶和其它一些黏合剂。黏合剂通过改变微粒内部的粘附力生成了湿颗粒(聚集物) 。它们可能还会改变界面性质、粘度或其它性质。在干燥过程中,它们可能产生固体桥,赋予干颗粒一定的机械强度。 黏合剂的性能指标包括: (1)表面张力; (2)粒径、粒径分布(检查法见附录 E) ;(3)溶解度; (4)粘度(检查法见附录 G) ; (5)堆密度和振实密度; (6)比表面积等。 (三)崩解剂 崩解剂是加入到处方中促使制剂迅速崩解成小单元并使药物更快溶解的成分。当崩解剂接触水分、胃液或肠液时,它们通过吸收液体膨胀溶解或形成凝胶,引起制剂结构的破坏和

6、崩解,促进药物的溶出。不同崩解剂发挥作用的机制主要有四种:膨胀、变形、毛细管作用和排斥作用。在片剂处方中,崩解剂的功能最好能具两种以上。崩解剂的性能取决于多个因素,如它的化学特性、粒径及分布以及粒子形态,此外还受一些重要的片剂因素的影响,如硬度和孔隙率。 崩解剂包括天然的、合成的或化学改造的天然聚合物。常用崩解剂包括:干淀粉、羧甲基淀粉钠、低取代羟丙基纤维素、交联羧甲基纤维素钠、交联聚维酮、泡腾崩解剂等。崩解剂可为非解离型或为阴离子型加上反离子,如钠、钙或钾。非解离态聚合物主要是多糖,如淀粉、纤维素、支链淀粉或交联聚维酮。阴离子聚合物阴离子聚合物主要是化学改性纤维素的产物或者低交联的聚丙烯酸酯

7、。离子聚合物应该考虑其化学性质。胃肠道 pH 的改变或者与离子型原料药(APIs)形成复合物都将会影响崩解性能。 与崩解剂性能相关的性质包括: (1)粒径及其分布(检查法见附录 E);(2)水吸收速率;(3)膨胀率或膨胀指数; (4)粉体流动性; (5)水分; (6)泡腾量等。 (四)润滑剂 润滑剂的作用为减小颗粒间、颗粒和固体制剂制造设备如片剂冲头和冲模的金属接触面之间的摩擦力。 润滑剂可以分为界面润滑剂、 流体薄膜润滑剂和液体润滑剂。 界面润滑剂为两亲性的长链脂肪酸盐(如硬脂酸镁)或脂肪酸酯(如硬脂酰醇富马酸钠) ,可附着于固体表面(颗粒3和机器零件) ,减小颗粒间或颗粒、金属间摩擦力而产

8、生作用。表面附着受底物表面的性质影响,为了最佳附着效果,界面润滑剂颗粒往往为小的片状晶体;流体薄膜润滑剂是固体脂肪(如氢化植物油,1 型) , 甘油酯 (甘油二十二烷酸酯和二硬脂酸甘油酯) , 或者脂肪酸 (如硬脂酸) ,在压力作用下会熔化并在颗粒和压片机的冲头周围形成薄膜,这将有利于减小摩擦力。在压力移除后流体薄膜润滑剂重新固化;液体润滑剂是在压紧之前可以被颗粒吸收,而压力下可自颗粒中释放的液体物质,也可用于减小制造设备的金属间摩擦力。 常用润滑剂包括:硬脂酸镁、微粉硅胶、滑石粉、氢化植物油、聚乙二醇类、月桂醇硫酸钠。 润滑剂的主要性能指标包括: (1)粒径及其分布(检查法见附录 E) ;

9、(2)表面积;(3) 水分 (检查法见附录 L 和附录 M) ;(4) 多晶型 (检查法见附录 D 和附录 F) ;(5)纯度(例如硬脂酸盐:棕榈酸盐比率) ; (6)熔点或熔程等。 (五)助流剂和抗结块剂 助流剂和抗结块剂的作用是提高粉末流速和减少粉末聚集结块。助流剂和抗结块剂通常是无机物质细粉。它们不溶于水但是不疏水。其中有些物质是复杂的水合物。常用助流剂和抗结块剂包括:硬脂酸镁、微粉硅胶等无机物质细粉。 助流剂可吸附在较大颗粒的表面, 减小颗粒间粘着力和内聚力, 使颗粒流动性好。 此外,助流剂可分散于大颗粒之间, 减小摩擦力。 抗结块剂可吸收水分以阻止结块现象中颗粒桥的形成。 助流剂和抗

10、结块剂的性能指标包括: (1)粒径及其分布(检查法见附录 E) ; (2)表面积; (3)吸收率等。 (六)空心胶囊 胶囊作为药物粉末和液体的载体可以保证剂量的准确和运输的便利。空心胶囊应与内容物相容。空心胶囊通常包括两个部分(即胶囊帽和胶囊体) ,都是圆柱状,其中稍长的称为胶囊体,另一个称为胶囊帽。胶囊帽和胶囊体紧密结合以闭合胶囊。软胶囊的胶囊壳是单片的可能沿轴缝合或是不缝合的。 空心胶囊根据原料不同分为明胶空心胶囊和其他胶囊。明胶空心胶囊由源于猪、牛、或鱼的明胶制备;其他胶囊由非动物源的纤维素、多糖等制备。空心胶囊也含其他添加剂如增塑剂、着色剂和防腐剂。应尽量少用色素,如果使用,种类和用量

11、至少应符合国家食用色素相关标准和要求。 空心胶囊可装填固体、半固体和液体制剂。传统的空心胶囊应在 37 生物液体如胃肠4液里迅速溶化或崩解。可以用肠溶材料和控释的聚合物来控制胶囊内容物的释放。 水分随着胶囊类型而变化,一般硬胶囊壳水分为 13%-16%,羟丙甲纤维素胶囊壳水分为 4%-7%,而软胶囊壳水分为 6%-8%。水分对胶囊脆度有显著的影响。平衡水分对剂型稳定性有关键作用, 因为水分子可在胶囊内容物和胶囊壳之间迁移。 透气性是佷重要的一个指标,因为 HPMC 胶囊有开放结构,因而通常其胶囊透气性比一般胶囊更大。明胶胶囊贮藏于较高的温度和湿度(如 40 /75% RH)下可产生交联,而 H

12、PMC 胶囊不会产生交联。粉末内容物里的乙醛因为能够提高明胶交联。明胶胶囊在 0.5%盐酸条件和 3638 但不低于 30的条件下应该能够在 15 分钟内崩解。HPMC 胶囊在 30以下也能崩解。 胶囊壳的性能指标包括: (1)水分(见附录 L 和附录 M); (2)透气性; (3)崩解性(见附录 B 和附录 X C); (4)脆度; (5)韧性; (6)冻力强度; (7)松紧度等。 (七)包衣材料 包衣可以掩盖药物异味、 改善外观、 保护活性成分、 控制药物释放。 包衣材料包括天然、半合成和合成材料。它们可能是粉末或者胶体分散体系(胶乳或伪胶乳) ,通常制成溶液或者水相及非水相体系的分散液。

13、 蜡类和脂类在其熔化状态时可直接用于包衣, 而不使用任何溶剂。 包衣材料的性能研究应针对: (1)溶解性,如肠溶包衣材料不溶于酸性介质而溶于中性介质; (2)成膜性; (4)粘度; (5)取代基及取代度; (6)抗拉强度; (7)透气性; (8)粒度等。 (八)润湿剂和/或增溶剂 增溶剂包含很多种不同的化学结构和等级。 某些增溶剂为非解离型表面活性剂, 在水中自发形成的胶束形态和结构, 起到增溶作用。 增溶机理常常与难溶性药物和增溶剂自组装体(如胶束) 形成的内核间的相互作用力有关。 还有一些类型的增溶剂利用与疏水性分子相互作用的聚合物链的变化,将难溶性药物溶入聚合物链中从而增加药物的溶解度。

14、 增溶剂包括固态、液态或蜡质材料。它们的化学结构决定其物理特性。然而增溶剂的物理特性和功效取决于表面活性特性和亲水亲油平衡值(HLB) (检查法见附录 H) 。HLB值低的可以用作乳化剂,而 HLB 值高的可以作为增溶剂。例如,十二烷基硫酸钠(HLB 值为 40)是亲水性的,易溶于水,一旦在水中分散,即自发形成胶束。增溶剂特殊的亲水和亲油特性可以由其临界胶束浓度(CMC)来表征。 增溶剂往往可以作为润湿剂。常用润湿剂和/或增溶剂包括聚氧乙烯蓖麻油,聚山梨酯 20,聚山梨酯 40,聚山梨酯 80,聚维酮等。 5与润湿剂/增溶剂有关的性能指标包括:(1)HLB 值; (2)粘度; (3)组成,检查

15、法可参考附录、附录 A、附录 G、附录 H、附录 H、附录 Q 和附录 E 等; (4)临界胶束浓度等。 (九)栓剂基质 栓剂基质为制造直肠栓剂和阴道栓剂的基质。常用栓剂基质包括:油脂性基质,如可可豆脂、半合成椰油酯、半合成或全合成脂肪酸甘油酯等;水溶性基质,如甘油明胶、聚乙二醇、泊洛沙姆等。 栓剂应在略低于体温(37C)下融化而释放药物,如果药物溶于基质中,其释放机制为溶蚀或扩散分配机制, 如果药物悬浮于基质中则通过溶蚀和溶出机制释放药物。 高熔点脂肪栓剂基质在体温条件下应融化。 水溶性基质应能够溶解或分散于水性介质中, 药物释放机制是溶蚀和溶出机制。 栓剂基质最重要的物理性质便是它的融程。

16、一般来说,栓剂基质的融程在 27-45C。然而,单一栓剂基质的融程较窄,通常在 2-3C 之间。基质融程的选择应考虑其它处方成分对最终产品融程的影响。 高熔点栓剂基质是半合成的长链脂肪酸甘油三酯的混合物,包括单甘油酯、双甘油酯,也可能存在乙氧化脂肪酸。根据基质的融程、羟值、酸值、碘值、凝固点和皂化值,可将基质分为不同的级别。 亲水性栓剂基质通常是亲水性半固体材料的混合物, 在室温条件下为固体, 而当用于病人时,药物会通过基质的熔融、溶蚀和溶出机制而释放出来。相对于高熔点栓剂基质,亲水性栓剂基质有更多羟基和其他亲水性基团。 聚乙二醇为一种亲水性基质, 具有合适的融化行为。 因此,栓剂基质的性能指标可参考附录 D、附录 C 和附录 VI D、附录 H 等。 (十)助悬剂和/或增稠剂 在药物制剂中,助悬剂和/或增稠剂用于稳定分散系统(例如混悬剂或乳剂) ,其机制为减少溶质或颗粒运动的速率,或降低液体制剂的流动性。 助悬剂、 增稠剂稳定分散体系或增稠效应有多种机制。 常见的是大分子链或细粘土束缚溶剂导致粘度增加

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号