锂离子电池纳米电极材料

上传人:飞*** 文档编号:35593715 上传时间:2018-03-17 格式:DOCX 页数:9 大小:706.05KB
返回 下载 相关 举报
锂离子电池纳米电极材料_第1页
第1页 / 共9页
锂离子电池纳米电极材料_第2页
第2页 / 共9页
锂离子电池纳米电极材料_第3页
第3页 / 共9页
锂离子电池纳米电极材料_第4页
第4页 / 共9页
锂离子电池纳米电极材料_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《锂离子电池纳米电极材料》由会员分享,可在线阅读,更多相关《锂离子电池纳米电极材料(9页珍藏版)》请在金锄头文库上搜索。

1、1锂离子电池纳米电极材料锂离子电池纳米电极材料摘要:摘要:纳米材料因为其具有尺寸小、比表面积大等特点,在锂离子电池电极材料的研究中倍受人民关注。使用纳米电极材料之后锂离子电池容量明显比传统的块体材料提高很多,然而纳米材料的使用也带来了相应的问题。本文主要讨论纳米材料在锂离子电池电极材料上的应用,分析其优缺点和改进方法,并对未来锂离子电池电极材料做出了展望。关键词:关键词:纳米材料,锂离子电池,1. 锂离子电池原理和结构锂离子电池原理和结构作电压与重量能量密度优于常用的镍镉电池(Ni/Cd)与 Ni/MH 电池,又无记忆效应及环保问题(锂离子电池的金属含量最低),因此成为目前商业开发二次电池的主

2、流;还以其薄形化及形状有高度的可塑性等特点,因此符合电子产品轻、薄、短、小的要求,所以备受各国科学家及电池业的重视,发展极快。锂离子电池被人们称为“绿色环保能源”和“跨世纪的能源革命” 。锂离子电池是照相机、电子手表、计算器、各种具有储存功能的电子器件或装置的理想电源。其结构如下图所示:图图 1. 锂离子电池的结构锂离子电池的结构2锂离子电池由正负电极、电解质、隔膜和外部控制电路组成。所以研究锂离子电池材料包括:电极材料、电解质材料和隔膜材料。锂离子电池工作原理如下1:图图 2. 锂离子电池工作原理锂离子电池工作原理正极反应: LiCoO2CoO2+Li+e负极反应: Li+e+C6LiC6电

3、池反应: LiCoO2+C6CoO2+ LiC6放电时:锂离子由负极中脱嵌,通过电解质和隔膜, 重新嵌入到正极中。充电时:锂离子从正极中脱嵌,通过电解质和隔膜,嵌入到负极中。2. 纳米电极材料的优缺点纳米电极材料的优缺点锂离子电池纳米电极存在一些潜在的优缺点。优点:(i)更好地释放锂嵌入和脱嵌过程中的应力,提高循环寿命;(ii)可发生在块体材料中不可能出现的反应;(iii)更高的电极/电解液接触面积提高了充/放电速率;(iv)短的电子输运路径(允许在低电导或高功率下使用) ;(v)短的锂离子传输路径(允许在低锂离子传导介质或高功率下使用) 。缺点:(i)高比表面积带来的不可预期的电极/电解液反

4、应增加,导致自放电现象,差的循环性能及寿命;(ii)劣等的颗粒包装技术使其体积能量密度很低,除非开发出一种特殊的压缩工艺,否则会限制它的应用;(iii)电极合成过程可能会更加复杂。3认识了这些优缺点,人们已经加大在负极材料及最近展开的正极材料的研发力度。3. 1 锂离子电池的负极材料锂离子电池的负极材料锂离子电池负极材料是锂离子的主要宿主,其要求如下:(1)锂贮存量高。(2)锂在碳中的嵌入脱嵌反应快,即锂离子在固相的扩散系数大,在电极电解液界面的移动阻抗小。(3)锂离子在电极材料中的存在状态稳定。(4)在电池的充放电循环中,碳负极材料体积变化小。(5)电子导电性高。(6)碳材料在电解液中不溶解

5、。负极材料的选择对电池的性能也有很大的影响。而最常用的是石墨电极,因为石墨导电性好。结晶度较高,具有良好的层状结构。适合锂的嵌入脱出。而且它的插锂电位低且平坦,可为锂离子电池提供高的平稳的工作电压。大致为:0.000.20V 之间(vs Li/Li)负极材料的种类包括:碳石墨材料(石墨,碳纤维,碳素,裂解等) 、金属合金、金属氧化物(锡、铁、锰、镍、钴等过渡金属氧化物) 、含锂金属氮化物和复合材料等。碳负极材料碳负极材料嵌锂容量高,其锂论容量为 372mAh/g。嵌锂电位低且平坦,为锂离子电池提供高而平稳的工作电压。容量受溶剂的影响程度较大,与有机溶剂的相容能力差。与锂电位相近,容易在使用过程

6、中石墨层之间形成金属锂枝晶。目前用石墨作炭负极的生产制造商主要有 Panasonic(松下) ,Sanyo(三洋),Varta(瓦尔塔)等公司。而碳材料又包括下面分类。软碳:软碳主要有石油焦、针状焦、碳纤维、碳微球等。其中,普通石油焦的比容量较低,约为 160mAh/g,循环性能较差。硬碳中主要有树脂碳(如酚醛树脂、环氧树脂、聚糠醇 PFAC 等),有机聚台物热解碳(PVA、PVC、PVDF、PAN 等)以及碳黑(如乙炔黑)等。石墨:与普通碳材料相比,石墨的导电性和结晶性更好,因而得到最广泛4的应用。石墨又分为人工石墨,天然石墨和改性石墨。目前学术界研究热门的碳纳米管在锂离子电池负极材料上也有

7、研究,如下图所示:D.A.C. Brownson et al. / Journal of Power Sources196 (2011) 48734885和普通碳材料相比,碳纳米管有导电性好,具有多孔结构能够给锂离子提供更多的储存空间。因此碳纳米管具有远高于普通碳负极材料的理论容量,超过 1000mAh/g。然而正是因为碳纳米管的多孔结构,使得碳纳米管负极材料容易受到电池电解液的侵蚀而遭到破坏。为了解决这个矛盾,D.A.C. Brownson 等2,使用浓硫酸和硝酸对碳纳米管进行了表面修饰,提高了锂离子电池的循环性能。过渡金属氧化物过渡金属氧化物作为锂离子电池负极材料,因为其特殊的反应机理(不

8、同于石墨等的嵌入和脱出)引起了广泛的关注。6C + LiCoO2 Li1-xCoO2 + LixC6 (1.)MxOy + 2yLi xM + yLi2O (2.)5然而充放电过程中,金属氧化物团聚(粉化)引起较大的体积变化,造成较大的不可逆容量损失,仍然是限制其在更高要求应用(EV、UPS 等)的障碍。目前正在研究的过渡金属氧化物种类有 Fe,Ni,Co,Mn,Sn,Cu,Ti 等3,和传统石墨材料相比,具有非常高的理论容量。如:锡的氧化物包括氧化亚锡、氧化锡及其混合物都具有一定的可逆储锂能力,可达 500mAh/g 以上, 但首次不可逆容量大,循环衰减快。通过改进制备工艺条件以及通过向锡的

9、氧化物中掺入 B、P、Al 及金属元素的方法可使不可逆容量和循环性能得到改善,但仍有待进一步改进和提高。 铁的氧化物包括 -Fe2O3、Fe3O4具有1000mAh/g 的理论容量。Yong Wang 等4,使用含 PVP 的 SnCl4和尿素溶液分解得到了分散性较好的SnO2纳米颗粒,颗粒的直径在 4-6nm 之间。用同样的方法,在尿素分解之前加入人工改性石墨,制备了纳米颗粒和石墨的复合材料。PVP 常作为分散剂,用于制备金属(Pt、Au、Ni、Co 等)纳米颗粒。在纳米颗粒制备的过程中,PVP有效的分散了 SnO2颗粒,减弱了颗粒之间的相互作用,从而使制备的样品颗粒更加分散。SnO2复合材

10、料和分散的纳米颗粒材料相比,循环性能得到了很大的提高,这归因于人工改性石墨对电极材料的保护作用。Jun Song Chen 等5,使用两步水热合成法得到了碳包覆 SnO2纳米颗粒。首先用 Sn 盐水解得到前驱体,然后 SnO2前驱体与葡萄糖溶液混合水热分解得到碳包覆 SnO2纳米颗粒。葡萄糖裂解碳有两个作用,一是作为 SnO2纳米颗粒的保护层,抑制其在充放电过程中的体积变化,二是提高电极材料的导电性。裂解碳在样品中的质量分数为 8%时,样品经过 100 次循环,其容量依然能够达到631 mAhg-1,高于传统的 SnO2颗粒和石墨材料。Jun Chen 等6,用阳极氧化铝薄膜模版,硝酸铁导入阳

11、极氧化铝薄膜模版,然后在 70下干燥 2 小时,然后在 400下煅烧 5 小时,最后使用烧碱去除氧化铝模版,得到了 -Fe2O3纳米管。右图为样品的 SEM 图,-Fe2O3纳米管直径约为 200nm。在 100 mAg-1的放电倍率下,样品在第 1、10、100 次循环后比容量分别为:1415mAhg-1、1115mAhg-1、890mAhg-1。这样的比容量是目前为此,所有过渡金属氧化物负极材料中最好的,远远超过石墨材料的 372 6mAhg-1。-Fe2O3是稳定的铁氧化物,具有八面体结构。锂电研究制备的纳米材料形状包括纳米晶,纳米管,纳米纺锤体,纳米核壳结构以及其他分层结构等,传统的合

12、成方法有水热法和其他氧化方法,而二维结构的纳米片很少被制备出。Jun Song Chen 等7,使用至上而下的方法,使用不同的酸腐蚀得到了色子状、片状和西瓜状等结构 -Fe2O3纳米材料。如右图所示,磷酸沿着(001)晶面轴从两个方向同时腐蚀,可以通过调节腐蚀时间来控制样品的形貌,图中 abc 是为未经腐蚀的 -Fe2OSEM 图,经过一定时间的腐蚀,样品变成直径约为100nm 的薄片状。 薄片状的 -Fe2O 样品,经过 100 次循环后,容量保持在以上 662 mAhg-1。复合负极材料复合负极材料一般高的比容量,典型的如 Si、Sn、Al、In、Zn、Ge 等,其中金属锡的理论比容量为

13、990mAh/g,硅为4200mAh/g,远高于碳石墨的 372 mAh/g。但锂反复的嵌入脱出导致合金类电极在充放电过程中体积变化较大,逐渐粉化失效,因而循环性能很差。单种材料总是不能满足高容量和良好的循环性能。比如金属氧化物具有很高的容量,然而其导电性差,以至于充放电过程能量损失大;而石墨材料导电性好,理论容量较低。如果将两种材料复合,可以提高综合电化学性能。常见的复合有掺入金属,与石墨、硅、碳纳米管等复合。Xiuyun Zhao 等8,用溶胶凝胶法,制备了果冻布丁状的 Fe3O4/Fe/Carbon 复合材料,具有优异的电化学性能,经过 50 充放电循环之后,容量仍然保持在600mAh/

14、g 以上。Alok Kumar Rai 等9,用共沉淀法制备了 TiP2O7/Li2.6Co0.4N 复合材料,以减少单一材料在使用中的容量损失,保持更好的循环性能。制备的复合材料首次7容量为 652.57 mAh/g,经过 20 次循环之后容量为 647.54 mAh/g,库仑效率达到98%。2. 2 锂离子电池正极材料锂离子电池正极材料锂离子电池正极材料的要求:(1) 相对锂的电极电位高,材料组成不随电位变化,粒子导电率和电子导电率高,有利于降低电池内阻.(2)锂离子嵌入脱嵌可逆性好,伴随反应的体积变化小,锂离子扩散速度快,以便获得良好的循环特性和大电流特性。 (3)与有机电解质和粘结剂接

15、触性能好,热稳性好,有利于延长电池寿命和提高安全性能。锂离子电池能有较高的电压,也和它的正极材料有很大关系。因为锂离子电池负极常用相对于锂 01V 的碳负极,因此要获得 3V 以上的电压 ,必须使用 4V 级(vsLi+/Li)正极材料,而通过嵌入过程中吉布斯自由能变化的计算可知,正极电位与晶格能、离子化能、离子的溶剂化能有关.其中晶格能影响较大,因此,电池电压主要由正极结晶结构决定。而尖晶石结构和层状结构的化合物一般电位较高,故常用作正极材料。常见的尖晶石结构如:LiMn2O4,层状结构有:LiCoO2。正极材料面临的挑战在于扩充容量和适应快速充放电10。基于 -NaFeO2尖晶石结构的过渡

16、金属氧化物显示了很好的前景,然而在成本控制和使用寿命(循环性能)上仍需改善。本文综述了目前研究最有前景的材料,并且讨论了性能改善方法。正极材料是典型的过渡金属氧化物,在充放电反应过程中,随着锂离子的嵌入脱出,金属离子具有很大的化合价改变,因为生成了不同的相,导致正极材料的体积变化。所以正极材料的性能除了和它本身的电化学性能,还与其微观结构相关。纳米材料具有很高的比表面积和内部空隙,可以提高材料的锂离子容量。目前应用最多的是层状结构的 LiCoO2。具有层状结构的 LiCoO2,由于其合成工艺简单,电化学性质稳定等优势,所以率先进入市场,并在目前的锂离子二次电池市场中占据主导地位。LiCoO28二维层状结构属于 a-NaFeO2型,适合于锂离子嵌入和脱嵌。图图 2. 层状层状 LiMO2结构图结构图尖晶石结构的材料(包括 LiFePO4、

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 企业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号