碳化硅陶瓷工艺流程

上传人:飞*** 文档编号:35357400 上传时间:2018-03-14 格式:PDF 页数:6 大小:57.25KB
返回 下载 相关 举报
碳化硅陶瓷工艺流程_第1页
第1页 / 共6页
碳化硅陶瓷工艺流程_第2页
第2页 / 共6页
碳化硅陶瓷工艺流程_第3页
第3页 / 共6页
碳化硅陶瓷工艺流程_第4页
第4页 / 共6页
碳化硅陶瓷工艺流程_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《碳化硅陶瓷工艺流程》由会员分享,可在线阅读,更多相关《碳化硅陶瓷工艺流程(6页珍藏版)》请在金锄头文库上搜索。

1、碳化硅( SiC)陶瓷,具有抗氧化性强,耐磨性能好,硬度高,热稳定性好,高温强度大,热膨胀系数小,热导率大以及抗热震和耐化学腐蚀等优良特性。因此,已经在石油、化工、机械、 航天、 核能等领域大显身手,日益受到人们的重视。例如, SiC 陶瓷可用作各类轴承、滚珠、喷嘴、密封件、切削工具、燃汽涡轮机叶片、涡轮增压器转子、反射屏和火箭燃烧室内衬等等。SiC 陶瓷的优异性能与其独特结构密切相关。SiC 是共价键很强的化合物,SiC 中 Si-C 键的离子性仅12 左右。因此,SiC 强度高、弹性模量大,具有优良的耐磨损性能。纯SiC不会被 HCl 、HNO3 、H2SO4 和 HF 等酸溶液以及NaO

2、H 等碱溶液侵蚀。在空气中加热时易发生氧化,但氧化时表面形成的SiO2 会抑制氧的进一步扩散,故氧化速率并不高。在电性能方面, SiC 具有半导体性,少量杂质的引入会表现出良好的导电性。此外,SiC 还有优良的导热性。SiC 具有 和 两种晶型。 SiC 的晶体结构为立方晶系,Si 和 C 分别组成面心立方晶格; SiC 存在着 4H、15R 和 6H 等 100 余种多型体,其中,6H 多型体为工业应用上最为普遍的一种。 在 SiC 的多种型体之间存在着一定的热稳定性关系。在温度低于1600 时,SiC 以 SiC 形式存在。当高于1600 时, SiC 缓慢转变成 SiC 的各种多型体。4

3、HSiC 在 2000 左右容易生成;15R 和 6H 多型体均需在2100 以上的高温才易生成;对于 6HSiC,即使温度超过2200 ,也是非常稳定的。SiC 中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。现就 SiC 陶瓷的生产工艺简述如下:一、 SiC 粉末的合成:SiC 在地球上几乎不存在,仅在陨石中有所发现,因此, 工业上应用的SiC 粉末都为人工合成。目前,合成SiC 粉末的主要方法有:1、Acheson 法:这是工业上采用最多的合成方法,即用电将石英砂和焦炭的混合物加热至2500 左右高温反应制得。因石英砂和焦炭中通常含有Al 和 F

4、e 等杂质,在制成的SiC 中都固溶有少量杂质。其中,杂质少的呈绿色,杂质多的呈黑色。2、化合法:在一定的温度下,使高纯的硅与碳黑直接发生反应。由此可合成高纯度的 SiC 粉末。3、热分解法:使聚碳硅烷或三氯甲基硅等有机硅聚合物在1200 1500 的温度范围内发生分解反应,由此制得亚微米级的 SiC 粉末。4、气相反相法:使 SiCl4 和 SiH4 等含硅的气体以及CH4 、C3H8 、C7H8 和( Cl4 等含碳的气体或使CH3SiCl3 、( CH3 )2 SiCl2 和 Si(CH3 )4 等同时含有硅和碳的气体在高温下发生反应,由此制备纳米级的 SiC 超细粉。二、碳化硅陶瓷的烧

5、结1、无压烧结1974 年美国 GE 公司通过在高纯度 SiC 细粉中同时加入少量的B 和 C,采用无压烧结工艺,于2020 成功地获得高密度SiC 陶瓷。目前,该工艺已成为制备SiC 陶瓷的主要方法。 美国 GE 公司研究者认为:晶界能与表面能之比小于1 732 是致密化的热力学条件,当同时添加B 和 C 后, B 固溶到 SiC 中,使晶界能降低,C 把 SiC 粒子表面的SiO2 还原除去,提高表面能,因此B 和 C 的添加为SiC 的致密化创造了热力学方面的有利条件。然而,日本研究人员却认为SiC 的致密并不存在热力学方面的限制。还有学者认为, SiC 的致密化机理可能是液相烧结,他们

6、发现:在同时添加B 和 C 的 SiC 烧结体中,有富B 的液相存在于晶界处。关于无压烧结机理,目前尚无定论。以 SiC 为原料,同时添加B 和 C,也同样可实现SiC 的致密烧结。研究表明:单独使用B 和 C 作添加剂,无助于SiC 陶瓷充分致密。只有同时添加B 和 C时,才能实现SiC 陶瓷的高密度化。为了SiC 的致密烧结, SiC 粉料的比表面积应在10m2g 以上,且氧含量尽可能低。B 的添加量在05左右, C 的添加量取决于SiC 原料中氧含量高低,通常C 的添加量与SiC 粉料中的氧含量成正比。最近, 有研究者在亚微米SiC 粉料中加入Al2O3 和 Y2O3 ,在 1850 2

7、000 温度下实现 SiC 的致密烧结。由于烧结温度低而具有明显细化的微观结构,因而,其强度和韧性大大改善。2、热压烧结50 年代中期,美国Norton 公司就开始研究B、Ni、Cr 、Fe、Al 等金属添加物对SiC 热压烧结的影响。实验表明:Al 和 Fe 是促进 SiC 热压致密化的最有效的添加剂。有研究者以Al2O3 为添加剂,通过热压烧结工艺,也实现了SiC 的致密化,并认为其机理是液相烧结。 此外,还有研究者分别以B4C、B 或 B 与 C,Al2O3 和 C、Al2O3 和 Y2O3 、Be、B4C 与 C 作添加剂,采用热压烧结,也都获得了致密SiC 陶瓷。研究表明:烧结体的显

8、微结构以及力学、热学等性能会因添加剂的种类不同而异。如:当采用 B 或 B 的化合物为添加剂,热压SiC 的晶粒尺寸较小,但强度高。当选用Be 作添加剂,热压 SiC 陶瓷具有较高的导热系数。3、热等静压烧结:近年来,为进一步提高SiC 陶瓷的力学性能,研究人员进行了SiC 陶瓷的热等静压工艺的研究工作。研究人员以B 和 C 为添加剂,采用热等静压烧结工艺,在1900 便获得高密度 SiC 烧结体。更进一步,通过该工艺,在2000 和 138MPa压力下,成功实现无添加剂SiC 陶瓷的致密烧结。研究表明:当SiC 粉末的粒径小于06m时,即使不引入任何添加剂,通过热等静压烧结,在1950 即可

9、使其致密化。如选用比表面积为24m2 g 的 SiC 超细粉,采用热等静压烧结工艺,在1850 便可获得高致密度的无添加剂SiC 陶瓷。另外, Al2O3 是热等静压烧结SiC 陶瓷的有效添加剂。而C 的添加对SiC 陶瓷的热等静压烧结致密化不起作用,过量的C 甚至会抑制SiC 陶瓷的烧结。4、反应烧结:SiC 的反应烧结法最早在美国研究成功。反应烧结的工艺过程为:先将 SiC 粉和石墨粉按比例混匀,经干压、挤压或注浆等方法制成多孔坯体。在高温下与液态Si 接触,坯体中的 C 与渗入的Si 反应,生成 SiC,并与 SiC 相结合,过量的Si 填充于气孔,从而得到无孔致密的反应烧结体。反应烧结

10、SiC 通常含有8的游离Si。因此,为保证渗Si的完全,素坯应具有足够的孔隙度。一般通过调整最初混合料中 SiC 和 C 的含量, SiC 的粒度级配, C 的形状和粒度以及成型压力等手段来获得适当的素坯密度。实验表明,采用无压烧结、热压烧结、热等静压烧结和反应烧结的SiC 陶瓷具有各异的性能特点。如就烧结密度和抗弯强度来说,热压烧结和热等静压烧结SiC 陶瓷相对较多,反应烧结 SiC 相对较低。 另一方面, SiC 陶瓷的力学性能还随烧结添加剂的不同而不同。无压烧结、热压烧结和反应烧结SiC 陶瓷对强酸、强碱具有良好的抵抗力,但反应烧结SiC陶瓷对 HF 等超强酸的抗蚀性较差。就耐高温性能比

11、较来看,当温度低于900时,几乎所有 SiC 陶瓷强度均有所提高;当温度超过1400 时,反应烧结 SiC 陶瓷抗弯强度急剧下降。(这是由于烧结体中含有一定量的游离Si,当超过一定温度抗弯强度急剧下降所致)对于无压烧结和热等静压烧结的SiC 陶瓷,其耐高温性能主要受添加剂种类的影响。总之,SiC 陶瓷的性能因烧结方法不同而不同。一般说来,无压烧结SiC 陶瓷 的综合性能优于反应烧结的SiC 陶瓷,但次于热压烧结和热等静压烧结的SiC 陶瓷。氧化铝的用途产品名称主要品种主要用途普通氢氧化铝联合法氢氧化铝氟化盐、净水剂拜尔法氢氧化铝氟化盐、净水剂、活性氧化铝特种氢氧化铝白色氢氧化铝阻燃剂、填料超白

12、氢氧化铝人造玛瑙、人造石超细氢氧化铝电缆、化妆品、纸张填料低铁氢氧化铝特种玻璃、人造玛瑙低钠氢氧化铝催化剂载体活性氧化铝活性氧化铝微粉耐火材料结合剂柱状活性氧化铝催化剂、干燥剂、净化剂球状活性氧化铝催化剂、干燥剂、吸附剂高纯氧化铝高纯氧化铝钠灯管、荧光粉高温氧化铝低钠高温氧化铝电子陶瓷、精细陶瓷中钠高温氧化铝结构陶瓷低钠高温氧化铝超细 微粉电子陶瓷、精细陶瓷、耐火材料中钠高温氧化铝超细 微粉结构陶瓷、耐火材料抛光研磨氧化铝不锈钢抛光研磨电工氧化铝高压开关环氧树脂绝缘件填料拟薄水铝石普通拟薄水铝石催化剂、粘结剂特种拟薄水铝石催化剂、粘结剂沸石4A沸石洗涤助剂10X沸石催化剂铝酸钠铝酸钠溶液氟化盐

13、固体铝酸钠催化剂、凝聚剂纯铝酸钙水泥纯铝酸钙水泥耐火材料结合剂氧化铝陶瓷结构陶瓷研磨介质精细陶瓷机械零件陶瓷原料主要来自岩石,而岩石大体都是由硅和铝构成的。陶瓷也是用这类岩石作原料,经过人工加热使之坚固,很类似火成岩的生成。因此从化学上来说,陶瓷的成分与岩石的成分没有什么大的区别。如果是硅和铝所构成的陶瓷,其主要原料有以下几种:1、石英化学成分是纯粹的二氧化硅(SiO2 ),又名硅石。这种矿物即使碎成细粉也无粘性,可用来弥补陶瓷原料过粘的缺点。在 780以上时便不稳定而变成鳞石英,在 1730时开始熔融。2、长石是以二氧化硅及氧化铝为主,又夹杂钠、钾、钙等的化合物。因其所含分量多寡不同,又有许

14、多种类。一般有将含长石较多的岩石叫作长石的,也有以它的产地来命名的。现在把长石中具有代表性的几种和它们的成分列于表1。其中前三种是纯粹的理论成分,后一类则含有岩石中所有的不纯物质。钠长石与钙长石以各种比例互相熔解,变成多种多样的长石。这些总称为“斜长石”,它的性质依其中所含钠长石与钙长石的比例而定。还有一种和正长石(钾长石) 为同样成分而形状稍有变异的,至今也多误传为正长石,其实这种应该叫做“微斜长石”。3、瓷土(又名“高岭土”)瓷土(H4Al2Si2O9 )是陶瓷的主要原料。它是以产于世界第一窑厂的中国景德镇附近的高岭而得名的。后来由“高岭”的中国音演变为“Kaolin ”,而成为国际性的名

15、词。纯粹的瓷土是一种白色或灰白色,有丝绢般光泽的软质矿物。瓷土是由云母和长石变质,其中的钠、 钾、钙、铁等流失, 加上水变化而成的,这种作用叫作“瓷土化”或“高岭土化”。至于瓷土化究竟因何而起,在学术界中虽然还没有定论,但大略可以认为是长石类由于温泉或含有碳酸气的水以及沼地植物腐化时所生的气体起作用变质而成的。一般瓷土多产于温泉附近或石灰层周围,可能就是这个原因。瓷土的熔点约在1780左右,实际上因为多少含有不纯物质,所以它的熔点略为降低。纯粹的瓷土(高岭土)存量不多,而且所谓纯粹的瓷土,也没有黏土那样强的粘度。一般所说的瓷土如果放在显微镜下面来观察,大部分带有白色丝绢状的光泽,银光闪闪,是非

16、常小的结晶,这就是所谓纯粹的瓷土。此外,还含有未变质的长石、石英、铁矿及其他作为瓷土来源的岩石的碎片。纯粹瓷土的成分是:SiO2 46.51% ,Al2O3 39.54% ,H2O 13.95%, 熔度为 1780。陶瓷中最高级的是瓷器。作瓷器用的岩石究竟以哪样最好?由于瓷器必须是白色。因而就不得不极力避免含有使陶瓷着色的铁分。含铁少而以氧化硅及氧化铝为主要成分的岩石有:花岗岩、 花岗斑岩、石英斑岩、石英粗面岩以及由这类岩石分崩而成的水成岩等。这里所说的花岗石乃至石英粗面岩(即在火成岩中也算是含有氧化硅及氧化铝特别多而铁分子少的),都是以石英、长石为主,并含有若干云母及富于铁分(氧化铁)的黑绿或黑褐色的矿物。假若仔细观察这些岩石,便可看到许多像玻璃一般透明的颗粒和像瓷器一样鲜艳的白色或淡红色的颗粒。前者是石英、后者是长石。这四种岩石的化学成分虽然相同,但因为长石与石英等颗粒的大小不同,因而形成了不同的岩石。花岗岩全体是

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 研究报告 > 综合/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号