线性代数--中国科技大学--典型教案

上传人:mg****85 文档编号:34215013 上传时间:2018-02-22 格式:DOC 页数:4 大小:30.50KB
返回 下载 相关 举报
线性代数--中国科技大学--典型教案_第1页
第1页 / 共4页
线性代数--中国科技大学--典型教案_第2页
第2页 / 共4页
线性代数--中国科技大学--典型教案_第3页
第3页 / 共4页
线性代数--中国科技大学--典型教案_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

《线性代数--中国科技大学--典型教案》由会员分享,可在线阅读,更多相关《线性代数--中国科技大学--典型教案(4页珍藏版)》请在金锄头文库上搜索。

1、典型教案第一章 线性方程组的解法线性方程组就是一次方程组。先来分析中学数学怎样解二元一次方程组。看它的原理和方法是否可以推广到一般的多元一次方程组。例 1、解方程组3x+4y=2 (1)2x-5y=9 (2)解、用加减消去法消元:5x(1)式+4x(2)式:23x=46 (3) 2x(1)式-3x(2) 式: 23y= -23 (4)由(3)和(4)解出 x=2 , y= -1。代入(1) , (2)式检验知道它是原方程组的解。以上解法的基本原理是: 由原方程(1)、(2) 分别乘以适当的常数再相加,得到各消去了一个未知数的新方程(3)、(4), 从中容易解出未知数的值来. 将一组方程分别乘以

2、常数再相加,得到的新方程称为原来那一组方程的线性组合。原来那一组方程的公共解一定是它们的任意一个线性组合的解。新方程(3)、(4)都是原方程 (1)、(2)的线性组合, (1)、(2)的公共解一定是(3)、(4)的解. 但反过来, 由(3)、(4)求出的解是否一定是(1) 、(2) 的解? 这却并不显然。因此需要将(3)、(4) 的解代入 (1)、(2)检验。或者说明(1)、 (2)也是(3)、(4)的线性组合。从而由 (3)、(4)组成的方程组与原方程组同解. 1.1. 方程组的同解变形1. 线性方程组的定义2. 方程的线性组合:方程的加法方程乘以常数方程的线性组合: 将 m 个方程分别乘以

3、 m 个已知常数,再将所得的 m 个方程相加, 得到的新方程称为原来那 m 个方程的一个线性组合容易验证: 如果一组数 (c_1,c_2,c_n) 是原来那些方程的公共解, 那么它也是这些方程的任一个线性组合的解.注意: 线性组合的系数中可以有些是 0, 甚至可以全部是 0. 如果某些系数是 0, 所得到的线性组合实际上也就是系数不为 0 的那些方程的线性组合。如果方程组 (II) 中每个方程其余都是方程组 (I) 中的方程的线性组合, 就称方程组(II) 是方程组 (I) 的线性组合. 此时方程组 (I) 的每一组解也都是方程组 (II) 的解。如果方程组 (I) 与方程组 (II) 互为线

4、性组合, 就称这两个方程组等价。此时两个方程组的同解。将方程组 (I) 变成方程组 (II) 的过程是同解变形。解方程组的基本方法, 就是将方程组进行适当的同解变形, 直到最后得到的方程组的可以写出来为止.3. 基本的同解变形:定理 1、方程组的以下三种变形是同解变形:1. 交换其中任意两个方程的位置, 其余方程不变。2. 将任一个方程乘以一个非零的常数, 其余方程不变。3. 将任一方程的 $la$ 倍加到另一方程上, 其余方程不变。证、只须证明原方程组(I)与变形后得到的新方程组(II) 互为线性组合。定理 1 所说的线性方程组的三类同解变形, 称为线性方程组的初等变换。这三类初等变换都是可

5、逆的:如果方程组(I)通过初等变换变成了方程组(II), 则方程组(II)也可以通过初等变换变回 (I)。1.2. 用消去法解方程组反复利用定理 1 中所说的三种初等变换, 可以将线性方程组消元,求出解来。例 1、解线性方程组(略)以上是方程组有唯一解的例子。解的每个分量都是由方程组的系数经过加、减、乘、除四则运算得到. 如果原方程组的系数都是实数, 由于实数集合对加、减、乘、除四则运算封闭 (当然除数不允许为 0), 方程组的唯一解的所有分量就都是实数。 同样, 有理数集合对加、减、乘、除运算也封闭, 因此有理系数线性方程组的唯一解的分量也都是有理数. 还可以考虑一般的系数范围, 只要它们对

6、加、减、乘、除四则运算封闭。定义、设 F 是复数集合的子集 , 至少包含一个非零的数, 并且在加、减、乘、除运算下封闭 (除数不为 0), 就称 F 是数域。例:复数集合 C、实数集合 R、有理数集合 Q。按照这个术语, 我们有: 如果线性方程组的系数都在某个数域 F 的范围内, 并且这个方程组有唯一解, 则解的分量也都在 F 的范围内。以后, 凡是谈到线性方程组, 总假定它的系数全都在某个数域 F 中, 称它为 F 上的线性方程组。解这个线性方程组的过程就只涉及到 F 中的数之间的加、减、乘、除四则运算。以上在解方程组的过程中, 实际上只对各方程中各项的系数进行了运算 (加、减、乘、除运算)

7、, 每次将代表未知数的字母抄写一遍实际上是一种累赘. 为了书写的简便, 更为了突出解方程组中本质的东西 - 系数的运算, 我们采用分离系数法,将线性方程组中代表未知数的字母略去, 将等号也略去, 只写出各方程的各系数。将每个方程的各项系数从左到右依次写成一行, 将各方程中同一个未知数的系数上下对齐, 常数项也上下对齐, 这样得到一矩形数表, 来表示这个方程组。例。定义、对任意自然数 m,n, 由数域 F 中 m x n 个数排成 m 行、n 列所得到的数表, 称为 F 上的 m x n 矩阵。按照这个定义, 由 m 个 n 元线性方程组成的方程组用 m 行 n+1 列矩阵表示。每一行代表一个方

8、程。每一列是同一未知数的系数或常数项。定义、由数域 F 中 n 个数 a_i 排成的有序数组 (a_1,a_2,a_n) 称为 F 上的 n 数组向量。所有分量都为 0 的向量称为零向量。F 上全体 n 数组向量组成的集合称为 F 上的 n 数组向量空间 , 记作 Fn 特别, 每个线性方程用行向量表示. 方程组的解在平常也可以用行向量表示,以节省空间. 但我们将看到, 作理论分析时, 用列向量来表示方程组的解有它的优越性.将线性方程用向量表示, 线性方程组用矩阵表示之后, 线性方程的加法、数乘、线性组合等运算, 以及线性方程组的初等变换, 就对应于向量的如下运算和矩阵的如下基本变形。n 数组

9、向量的加法,数乘,线性组合。矩阵的三类初等行变换。矩阵的三类初等行变换对应于线性方程组的三类基本同解变形。用基本同解变形对线性方程组消元的过程, 也就是用初等行变换将尽可能多的矩阵元素化为零的过程。例。附件 5教学效果调查报告线性代数是一门比较困难的基础课程,是学生从具体的内容到抽象内容过渡需要通过的一个难关。特别是数学专业的线性代数,难度就更大。由于我们采用了从问题出发、启发式的教学方法,在引入抽象的概念时尽量从解决具体问题的需要出发、以比较自然的方式来引入,便于学生理解其背景和实质。这种教学方法收到很好的效果,学生普遍克服了害怕线性代数的情绪,培养了对这门课程乃至对代数学科的兴趣。2000 年上学期,学校教务处对全校 435 门课程进行了教学检查,由学生对授课教师课堂教学质量评分。在以前这类检查中,一般是比较易懂的课程更容易得到高分,而比较困难的课程难于得到高分。但在这次检查中,李尚志教授承担的线性代数课,以测评分4.89 分的高分在全校总共 435 门课程中名列第三。这反映了该课程建设取得的很好的教学效果。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号