铝栅+硅栅器件的版图

上传人:mg****85 文档编号:33755152 上传时间:2018-02-17 格式:PPT 页数:64 大小:1.56MB
返回 下载 相关 举报
铝栅+硅栅器件的版图_第1页
第1页 / 共64页
铝栅+硅栅器件的版图_第2页
第2页 / 共64页
铝栅+硅栅器件的版图_第3页
第3页 / 共64页
铝栅+硅栅器件的版图_第4页
第4页 / 共64页
铝栅+硅栅器件的版图_第5页
第5页 / 共64页
点击查看更多>>
资源描述

《铝栅+硅栅器件的版图》由会员分享,可在线阅读,更多相关《铝栅+硅栅器件的版图(64页珍藏版)》请在金锄头文库上搜索。

1、铝栅、硅栅器件的版图,铝栅工艺MOSFET的结构Structure,Gate,Source,Drain,N阱硅栅CMOS IC的剖面图,以SiO2为栅介质时,叫MOS器件,这是最常使用的器件形式。历史上也出现过以Al2O3为栅介质的MAS器件和以 Si3N4为栅介质的MNS 器件,以及以SiO2+Si3N4为栅介质的MNOS器件,统称为金属-绝缘栅-半导体器件-MIS 器件。 以Al为栅电极时,称铝栅器件。以重掺杂多晶硅(Poly-Si) 为栅电极时, 称硅栅器件。它是当前MOS器件的主流器件。,硅栅工艺是利用重掺杂的多晶硅来代替铝做为MOS管的栅电极,使MOS电路特性得到很大改善,它使|VT

2、P|下降1.1V,也容易获得合适的VTN值并能提高开关速度和集成度。硅栅工艺具有自对准作用,这是由于硅具有耐高温的性质。栅电极,更确切的说是在栅电极下面的介质层,是限定源、漏扩散区边界的扩散掩膜,使栅区与源、漏交迭的密勒电容大大减小,也使其它寄生电容减小,使器件的频率特性得到提高。另外,在源、漏扩散之前进行栅氧化,也意味着可得到浅结。,铝栅工艺为了保证栅金属与漏极铝引线之间有一定的间隔,要求漏扩散区面积要大些。而在硅栅工艺中覆盖源漏极的铝引线可重迭到栅区,这是因为有一绝缘层将栅区与源漏极引线隔开,从而可使结面积减少30%40%。硅栅工艺还可提高集成度,这不仅是因为扩散自对准作用可使单元面积大为

3、缩小,而且因为硅栅工艺可以使用“二层半布线”即一层铝布线,一层重掺杂多晶硅布线,一层重掺杂的扩散层布线。由于在制作扩散层时,多晶硅要起掩膜作用,所以扩散层不能与多晶硅层交叉,故称为两层半布线铝栅工艺只有两层布线:一层铝布线,一层扩散层布线。硅栅工艺由于有两层半布线,既可使芯片面积比铝栅缩小50%又可增加布线灵活性。,简化N阱硅栅CMOS工艺演示,氧化层生长,曝光,氧化层的刻蚀,光刻1,刻N阱掩膜版,N阱注入,光刻1,刻N阱掩膜版,形成N阱,氮化硅的刻蚀,N阱,P-SUB,场氧的生长,N阱,P-SUB,去除氮化硅,N阱,P-SUB,重新生长二氧化硅(栅氧),N阱,P-SUB,生长多晶硅,N阱,P

4、-SUB,刻蚀多晶硅,N阱,P-SUB,刻蚀多晶硅,N阱,P-SUB,场氧化层,栅氧化层,P+离子注入,N阱,P-SUB,N+离子注入,N阱,P-SUB,生长磷硅玻璃PSG,N阱,P-SUB,光刻接触孔,N阱,P-SUB,刻铝,N阱,P-SUB,刻铝,N阱,P-SUB,N阱,P-SUB,铝栅PMOSFET的制造流程,Step 0: Start with a bare n-type silicon wafer.,N Doped Silicon,*Step 1: (layering) Grow thick layer (5000) of silicon dioxide (field oxide)

5、to act as a doping barrier.,*Step 2a: (patterning) Apply photoresist.,Source/Drain: Photomask (dark field) mask 1,Clear Glass,Chromium,Cross Section,Step 2b: (patterning) Expose photoresist to create temporary pattern for source/drain regions.,N Doped Silicon,Thick Field Oxide,Photoresist,Ultraviole

6、t Light,Photomask,Step 2c: (patterning) Develop photoresist, completing temporary pattern for source/drain regions.,N Doped Silicon,Thick Field Oxide,Photoresist,Step 2d: (patterning) Wet etch permanent openings for source/drain into field oxide.,N Doped Silicon,Thick Field Oxide,Photoresist,Step 2e

7、: (patterning) Remove photoresist. Permanent pattern remains in the silicon dioxide.,N Doped Silicon,Thick Field Oxide,Source/Drain Windows: Microscope View mask 1,Bare Silicon,Thick Field Oxide,Cross Section,*Step 3a: (doping) Apply p-type spin-on dopant film. Boron penetrates into the silicon thro

8、ugh the holes in the field oxide to begin formation of the source and drain regions.,N Doped Silicon,P+ Drain,P+ Source,Thick Field Oxide,Boron-Doped Spin-On Oxide,Step 3b: (heat treatment) Drive dopants deeper into silicon using high temperatures (1000), completing formation of the source and drain

9、 regions.,N Doped Silicon,P+ Drain,P+ Source,Thick Field Oxide,Boron-Doped Spin-On Oxide,P+ Drain,P+ Source,Channel Length - Leff,Step 4a: (layering) Wet etch to remove SOD (spin-on dopant) and field oxide layers.,N Doped Silicon,P+ Drain,P+ Source,Source/Drain Doping: Microscope ViewMask1,P+ Doped

10、Source and Drain (not actually visible),N-Doped Substrate,Cross Section,*Step 4b: (layering) Regrow new field oxide layer.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Oxide grows slightly thicker over doped areas.,*Step 5a: (patterning) Apply photoresist.,Thick Field Oxide,N Doped Silicon,P

11、+ Drain,P+ Source,Photoresist,Gate: Photomask (dark field) mask2,Clear Glass,Chromium,Cross Section,Step 5b: (patterning) Expose photoresist to create temporary pattern for gate region.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Photoresist,Ultraviolet Light,Photomask,Step 5c: (patterning)

12、 Develop photoresist, completing temporary pattern for gate region.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Photoresist,Step 5d: (patterning) Wet etch permanent opening for gate region into field oxide.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Photoresist,Step 5e: (patternin

13、g) Remove photoresist. Permanent pattern remains in the silicon dioxide.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,*Step 6: (layering) Grow thin layer (700) of silicon dioxide to act as the gate oxide for the transistor.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Thin Gate Oxide

14、,After Gate Oxide Growth: Microscope View,P+ Doped Source and Drain (under Field Oxide),Thick Field Oxide,Thin Gate Oxide,Cross Section,*Step 7a: (patterning) Apply photoresist.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Thin Gate Oxide,Photoresist,Step 7b: (patterning) Expose photoresist

15、to create temporary pattern for contact holes.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Thin Gate Oxide,Photoresist,Ultraviolet Light,Photomask,Contacts: Photomask (dark field) mask 3,Clear Glass,Chromium,Cross Section,Step 7c: (patterning) Develop photoresist, completing temporary pattern for contact holes.,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号