四旋翼飞行器程序

上传人:笛音 文档编号:20510284 上传时间:2017-11-22 格式:DOC 页数:16 大小:229.50KB
返回 下载 相关 举报
四旋翼飞行器程序_第1页
第1页 / 共16页
四旋翼飞行器程序_第2页
第2页 / 共16页
四旋翼飞行器程序_第3页
第3页 / 共16页
四旋翼飞行器程序_第4页
第4页 / 共16页
四旋翼飞行器程序_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《四旋翼飞行器程序》由会员分享,可在线阅读,更多相关《四旋翼飞行器程序(16页珍藏版)》请在金锄头文库上搜索。

1、四旋翼自主飞行器 (B 题)摘要系统以 R5F100LE 作为四旋翼自主飞行器控制的核心,由电源模块、电机调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行控制模块包括角度传感器、陀螺仪,传感器检测模块包括红外障碍传感器、超声波测距模块、TLS1401-LF 模块,瑞萨 MCU 综合飞行器模块和传感器检测模块的信息,通过控制 4 个直流无刷电机转速来实现飞行器的欠驱动系统飞行。在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个 PID 控制回路,即位置控制回路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点

2、。 - 1 -目 录1 系统方案论证与控制方案的选择 .- 2 -1.1 地面黑线检测传感器 .- 2 -1.2 电机的选择与论证 .- 2 -1.3 电机驱动方案的选择与论证 .- 3 -2 四旋翼自主飞行器控制算法设计 .- 3 -2.1 四旋翼飞行器动力学模型 .- 3 -2.2 PID 控制算法结构分析 .- 3 -3 硬件电路设计与实现 .- 5 -3.1 飞行控制电路设计 .- 5 -3.2 电源模块 .- 6 -3.3 电机驱动模块 .- 6 -3.4 传感器检测模块 .- 7 -4 系统的程序设计 .- 8 -5 测试与结果分析 .- 9 -5.1 测试设备 .- 9 -5.2

3、 测试结果 .- 9 -6 总结 .- 10 -附录 A 部分程序清单 .- 11 - 2 -1 系统方案论证与控制方案的选择根据题目要求,对该系统的特点及其控制特性进行了分析,进行了几种不同设计方案的比较。1.1 地面黑线检测传感器探测地面黑线的基本原理是:光线照射到路面并反射,由于黑线和白色地面对光的反射系数不同,所以可以根据接收到的反射光强弱来判断黑线。可实现的方案有:方案一:采用普通发光二极管及光敏电阻组成的发射接收方案。该方案在实际使用时,容易受到外界光源的干扰,有时甚至检测不到。主要是因为可见光的反射效果跟地表的平坦程度、地表材料的反射情况均对检测效果产生直接影响。虽然可采取超高高

4、度发光二极管降低一定的干扰,但这又增加额外的功率损耗。方案二:红外避障传感器 E18-D80NK。这是一种集发射与接收于一体的光电传感器,发射光经过调制后发出,接收头对反射光进行解调输出,有效的避免了可见光的干扰。透镜的使用,也使得这款传感器最远可以检测 80 厘米距离。检测障碍物的距离可以根据要求通过尾部的电位器旋钮进行调节。并且具有探测距离远、受可见光干扰小、价格便宜、易于装配、使用方便等特点。比较以上二种方案,方案二占有很大优势,不但能准确完成测量,而且能避免电路的复杂性,因此选择方案二。1.2 电机的选择与论证四旋翼无人飞行器是通过控制四个不同无刷直流电机的转速,达到控制四旋翼无人飞行

5、器的飞行姿态和位置,与传统直升机通过控制舵机来改变螺旋桨的桨距角,达到控制直升机的目的不同。在电机的选型上,主要有直流有刷电机和直流无刷电机两种。方案一:直流有刷电机是当前普遍使用的一种直流电机,它的驱动电路简单、控制方法成熟,但是直流有刷电机使用电刷进行换向,换向时电刷与线圈触电存在机械接触,电机长时间高速转动使极易因磨损导致电气接触不良等问题,而且有刷电机效率低、力矩小、重量大,不适合对功率重量比敏感的电动小型飞行器。方案二:直流无刷电机能量密度高、力矩大、重量轻,采用非接触式的电子换向方法,消除了电刷磨损,较好地解决了直流有刷电机的缺点,适用于对功率重量比敏感的用途,同时增强了电机的可靠

6、性。- 3 -所以选择直流无刷电机作为动力源。1.3 电机驱动方案的选择与论证方案一:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。但是电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。更主要的问题在于一般电动机的电阻很小,但电流很大;分压不仅会降低效率,而且实现很困难。方案二:采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整。这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较 短、可靠性不高。方案三:采用全桥驱动 PWM 电路。这种驱动的优点是使管子工作在占空比可调的开关状态,提高使用效率实现电机转速的微调。并且保证了

7、可以简单的方式实现方向控制。基于上述理论分析,选择方案三。2 四旋翼自主飞行器控制算法设计2.1 四旋翼飞行器动力学模型设计的小型四旋翼飞行器适用于室内低速飞行,因此忽略空气阻力的影响。因此,简化后的飞行器动力学模型为式 1-14123(sincosin)/cosi/XYZxumyzgulI式中 为四旋翼飞行器在导航坐标系下的线位移, 为运动加速度,mTxyz Txyz为飞行器质量, 分别为机体的偏航角、俯仰角和横滚角, 为旋翼面中心到四旋翼飞, l行器质心的距离, 为轴向惯性主矩。该动力学模型对四旋翼飞行器的真实飞行状,XYZI态进行了合理的简化,忽略了空气阻力等对系统运行影响较小的参数,使

8、得飞行控制算法更加简洁。2.2 PID 控制算法结构分析在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个控制回路,即位置- 4 -控制回路和姿态控制回路。算法结构如图 B-1 所示。给定位置位置控制 姿 态控 制 电机控制飞行器机体姿态控制回路位置控制回路xyz图 2-1 四旋翼飞行器控制算法结构图使用经典 PID 控制算法实现位置控制回路和姿态控制回路。PID 算法简单可靠,理论体系完备,而且在长期的应用过程中积攒了大量的使用经验,在飞行器位置和姿态控制应用中具有良好的控制效果和较强的鲁棒性,能提供控制量的较优解。控制回路包含了 三个控制量,因此设计 3 个独立的 PID 控制器

9、对位移进行控制。根据 PID,xyz控制器的原理,设 分别为比例项、积分项和微分项系数,有pidk式 1-2()()()()()()pdiddipdiddkxtkxyyyxkzztz 其中, 为航姿参考系统测量到的加速度积分得到的位移量。,dxz姿态控制回路的作用是控制四旋翼飞行器的飞行姿态,使其实际姿态与设定的姿态一致。姿态控制回路有偏航角、俯仰角和横滚角三个控制量,在此忽略三个通道之间的耦合效应,设计 3 个独立的 PID控制器对每个量进行独立控制。式 1-3123/XYZuIl根据 PID 控制器的原理,设 分别为比例项、积分项和微分项系数,有控制器方程如 B-,pidk4。式 1-4()()()()()()pdiddipdiddtkkkt - 5 -其中比例项系数为 3.3 积分项系数为 0.14 微分项系数为 3.2。3 硬件电路设计与实现系统以 R5F100LE 单片机为核心,主要包括电源模块、电机驱动模块、飞行控制模块、传感器检测等功能模块,该系统硬件结构框图如图 2-

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号