动力总成悬置系统设计总结

上传人:文库****9 文档编号:173748711 上传时间:2021-03-13 格式:DOC 页数:35 大小:1.08MB
返回 下载 相关 举报
动力总成悬置系统设计总结_第1页
第1页 / 共35页
动力总成悬置系统设计总结_第2页
第2页 / 共35页
动力总成悬置系统设计总结_第3页
第3页 / 共35页
动力总成悬置系统设计总结_第4页
第4页 / 共35页
动力总成悬置系统设计总结_第5页
第5页 / 共35页
点击查看更多>>
资源描述

《动力总成悬置系统设计总结》由会员分享,可在线阅读,更多相关《动力总成悬置系统设计总结(35页珍藏版)》请在金锄头文库上搜索。

1、第一章悬置系统的经验设计1.1悬置系统的功能与设计原则发动机悬置系统是发动机应用工程的重要组成部分。悬置系统的功能与设计原则大致可归纳如下:1隔离振动在发动机所有工作转速范围内,发动机产生的振动必须通过悬置系统加以隔离,尽可能降低传递给汽车底盘和车身的振动。同时悬置系统还必须隔离由道路不平引起的车轮悬挂系统的振动,防止这一振动向发动机传递,避免发动机振动加剧以满足车辆运行时的平稳性和舒适性,并保证怠速和停机时发动机的稳定性。2发动机支承和定位为了隔离振动,发动机被支承在几个弹簧软垫上。因而在发动机本身振动和外界作用力驱动下,发动机和底盘之间必然存在着相对运动。所以悬置系统必须具有控制发动机相对

2、运动和位移的功能,使发动机始终保持在相对稳定和正确的位置上,决不能让发动机在向各方向运动中与底盘车身上的零件发生干涉和碰撞。3保护发动机车辆在行驶过程中同时承受着动态负荷和冲击负荷。悬置系统应具有保护发动机的能力,防止发动机上个别部位因承受过大的冲击载荷而损坏,特别要保证发动机缸体后端面与飞轮壳的结合面上的弯曲力矩不超过制造厂规定的限值。此外车辆在崎岖道路上行驶时,车架的扭曲变形会使发动机承受扭曲应力,使发动机局部受到损伤。悬置系统应布置合理,并正确选择软垫刚度等参数,以保证能充分缓冲和抵御外力的冲击并消除薄弱环节。4克服和平衡因扭矩输出而产生的反作用力悬置系统必须有足够强度,当发动机变速箱总

3、成输出最大扭矩时能克服最大扭矩所产生的最大反作用力。悬置软垫和支架在这种条件下都必须具有足够的可靠性。5发动机与底盘之间的连接零件必须有足够柔性这些零件是排气管进气管、燃油管、冷却水管、压缩空气管、油门操纵机构及变速箱操纵机构等。如果它们的刚度较大,则发动机的振动容易造成这些零件的损坏,特别是在怠速停机和出现共振时表现得尤其剧烈。另一方面如果它们刚度较大,也会改变发动机悬置系统的刚度和自振频率,从而影响隔振效果并导致噪声升高,因此这些连接件必须采用柔性软管或柔性连接。6悬置系统的零部件必须具有足够的强度和可靠性在严重的冲击负荷下应保证不发生损坏特别,起关键作用的悬置软垫必须可靠耐久能适应各种恶

4、劣工作环境(包括耐水耐油及耐高温和低温)。如果系统零部件出现损坏,则损坏应最先出现在软垫总成上,而不应是悬置支架金属件。在软垫的橡胶部分损坏后,发动机应仍能依靠软垫总成中金属骨架的支承而保持其原有位置,而不应引起其它撞击损坏,一般来说发动机悬置系统零部件的寿命应与发动机的大修期相当,在发动机大修前不应出现损坏。7发动机悬置系统的设计还应满足装配精度低、拆装方便和维修接近性好等条件8悬置系统零部件还应符合低成本、通用化、标准化和系列化的要求1.2发动机的振动特性汽车和工程机械所用发动机大部分为往复式内燃机。由于活塞连杆机构的往复运动以及输出扭矩时形成的脉冲反作用力,这类发动机本身就是一个固有的振

5、动源。虽然经过精心设计和制造振动可以得到一定减轻,但由于结构先天的弱点振动是不可能完全消除的。振动及振动噪声不但易造成发动机及车辆零部件的损坏,同时会使驾驶员及乘客疲劳所以必须隔振使车内振幅降至可接收的水平。1.2.1发动机的振动源发动机的振动主要起源于两处1点火激励这是由发动机气缸内点火燃烧,曲轴输出脉冲扭矩引起的激扰。由于扭矩周期性地发生变化导致发动机上反作用扭矩又称倾覆力矩的波动这种波动使发动机产生周期性的扭摆运动,故称扭转振动。其振动频率实际上就是发动机的发火频率,计算公式为:(1-1)式中:为发动机转速,rpm为汽缸数为冲程系数,两冲程为1,四冲程为22不平衡惯性力激励这是由发动机往

6、复运动的活塞和连杆等造成的惯性力不平衡的垂直振动其激振,干扰频率为:(1-2)式中:为发动机转速,rpm为比例系数,一阶惯性力为1,二阶惯性力为2不平衡惯性力的外激干扰频率与发动机的缸数无关,但惯性力的不平衡量与发动机缸数和结构特征有着密切关系。对单缸机而言一阶惯性力和二阶惯性力都是孤立存在的,它的平衡性最差相对振幅也最大,除非发动机内装有特设的平衡机构。对多缸机而言,由于曲轴上曲拐角度的合理分布和配置,使各缸之间产生的惯性力相互抵消和平衡。因此部分多缸机上的惯性力振动已基本得到消除,但制造上造成的误差除外。表1-1是四冲程往复式内燃机的固有平衡特性表表1-1四冲程往复式内燃机的固有平衡特性表

7、从表1-1可以看出汽车常用的几种发动机中只有三缸机和四缸机两种机型没有得到完全平衡,因此对于使用这两种机型的汽车必须特别重视悬置系统的设计,除非发动机本身已经采用了专门设计的平衡机构。不带平衡机构的直列四冲程四缸机目前在汽车上的应用非常广泛,出现的振动问题也具有普遍性,其基本特点如下:首先在低怠速如600转/分钟时,它的扭转振动频率和不平衡二级惯性力的外激频率均较低,仅20Hz。一般情况下十分接近悬置系统的固有频率,易导致共振。其次在高速阶段如果发动机的额定转速为3000转/分钟,则其二级不平衡的振动的外激频率高达100Hz,而且不平衡惯性力大小与转速的平方成正比,这可能导致发动机一级变速箱总

8、成产生弯曲共振,因此设计四缸机悬置系统时必须重视高低两端的振动特性。直列六缸机的惯性力和惯性力矩是完全平衡的。理论上它不应存在垂直方向的惯性力振动。如果出现明显垂直振动,这可能是发动机或离合器运动件的平衡制造精度超差、各缸工作不均匀或失火造成的。严格说来直列六缸机的唯一激振源是反作用力矩的扭转振动。1.2.2动力总成的振动模态发动机坐标系规定如下:以曲轴中心线与发动机变速器结合面交点为原点,以曲轴中心线指向变速器侧为X轴,以平行于汽缸中心线并向上方向为Z轴,Y轴由右手定则确定。汽车动力总成通常是通过橡胶悬置支撑在车架上的,由于橡胶悬置通常为弹性元件,因此发动机动力总成与橡胶悬置构成质量-弹簧式

9、的振动系统。一般汽车动力总成悬置系统的固有频率都在30Hz以下,而无论发动机本身还是汽车底盘结构当作弹性体时其最低的一阶固有频率都在60Hz以上,两者相差甚远。因此在工程实际中发动机动力总成和汽车底盘都被视为刚体处理。视为刚体的发动机动力总成在空间的运动就具有六个自由度,即三个沿相互垂直的通过发动机动力总成质心的轴线的往复运动和绕此三根轴线的回转运动。这样发动机动力总成悬置系统就有六个振动模态,相应的也就有六个固有频率。沿Z方向的运动称为垂向平动,绕X方向的转动称为横摇,绕Y方向的转动成为纵摇,绕Z方向的转动称为平摇。理论分析表明,汽车发动机动力总成的六个振动模态并不是完全耦合在一起的,而是形

10、成两组三联耦合振动,即纵向垂向纵摇耦合和横向横摇平摇耦合。1.3悬置系统的隔振机理1.3.1自由振动最简单的振动系统由质量块和弹簧阻尼组成,如图1-1所示图1-1有阻尼自由振动在不考虑阻尼的情况下若将重块向下压,使弹簧压缩变形然后松开,质量块就会上下自由振动。振动的自振频率或称固有频率的计算公式为:(1-3)式中:为弹簧刚度(N/m)为质量块质量(Kg)实际上阻尼的存在将会导致振动振幅逐渐减小,直至振动完全停止。这种现象称为有阻尼的自由振动振动。衰减率取决于系统阻尼的大小。发动机悬置系统的阻尼通常很小,可忽略不计。如果简化为最基本的模型,动力总成就相当于质量块,悬置软垫相当于弹簧。这就可以计算

11、出悬置系统的自振频率,可见悬置软垫的刚度对悬置系统自振频率的大小起关键性作用。1.3.2受迫振动如果在有阻尼的自由振动中同时向重块施加一个周期性的外力,即存在强制的外激振力。此时重块将既有自由振动又有外激强制振动,两个振动叠加这种振动称为受迫振动。显然发动机悬置系统的振动属于这种受迫振动。有两类强制外激振动源作用于发动机悬置系统,一类是内振源即上节所述的由发动机本身引起的振动,另一类是外振源由道路不平引起,并通过车轮悬挂系统及车架传递给发动机变速箱总成的振动。这种由道路不平引起的振动频率很低大约在13Hz。这两种强制振动均要求进行隔离,强制振动模型示意图见图1-2图1-2有阻尼的强迫振动1.3

12、.3频率响应根据振动理论分析,当强制振动施加到自由振动的振波上,开始时运动情况比较复杂,经过一定时间后自振波的振幅将变的很小而可忽略,只留下强制振动的成分。但这种受迫振动的振幅与频率比有很大的关系。频率比就是强制振动的频率与自振动的频率之比。如果将强制振动的振幅称之为输入振幅,将受迫振动的振幅称之为输出振幅,则输出振幅与输入振幅之比可称为振动传递率。显然振动传递率大于1表示振动放大,这是不希望的。振动传递率小于1表示振动减小,这是所追求的。图1-3是频率比与振动传递率关系曲线,称为幅频响应曲线。它是减振原理中很重要的依据。图1-3幅频响应曲线频率比与振动传递率之间的关系式如下:(1-4)式中:

13、为频率比为阻尼比阻尼比为实际阻尼与临界阻尼之比(1-5)1.3.4共振从图1-3可以看出随着频率比增大,开始时振动传递率迅速上升。到频率比接近1,即外激频率接近自振频率时,输出振幅出现最高峰。振动传递率可达数十倍,即出现共振。共振振幅的大小取决于系统中的阻尼,按理论如果阻尼等于0共振振幅为无穷大,而实际上阻尼总是存在的,在大阻尼情况下共振振幅将得到大幅度控制,故共振振幅因阻尼不同而各异。1.3.5隔振对于采用普通橡胶悬置软垫系统而言,阻尼一般很小可不予考虑。即认为阻尼c=0。此时可将振动传递率表达式简化为(1-6)在这中情况下,频率比小于1时振动被放大;频率比等于1时,振动传递率最大,出现共振

14、;频率比继续增大,振动传递率就逐渐下降,当频率比达到时振动传递率等于1,表示振幅恢复到原始的强制振动的水平;随着频率比进一步加大,振动传递率将小于1,因而产生隔振的效果。可以看出频率比越大隔振效果越好,但频率比大于5以后隔振效果的提高就不明显了。表1-2是频率比与隔振效果的关系表表1-2是频率比与隔振效果的关系表在悬置系统设计中,如果已知强制外激振动的频率,为了隔振悬置系统的自振频率必须控制在一个界限以内。举例如下:首先考虑发动机激振,以四缸机为例在怠速时内振源的外激扭转振动频率设为20Hz。则悬置系统的自振频率扭摆方向必须控制在20/1.414Hz以下,通常应设定在10Hz。同时需考虑道路激

15、振,载重车悬挂系统自振频率为1.52.2Hz,轿车悬挂系统自振频率为11.5Hz。对于发动机悬置系统而言,这属于发性在底座的低频外激强制振动。为了远离共振区,悬置系统的最低自振频率应大于悬挂系统自振频率的1.52.0倍,即频率比应小于0.50.6此时的振动传递率小于1.8,否则汽车在不平道路上行驶时发动机会产生过大的摇晃。要满足这两方面的条件,就必须合理选择悬置软垫并对悬置系统进行精心布置。1.3.6实际应用中悬置软垫的选择根据上述机理,悬置系统的自振频率应小于发动机工作转速范围内最小的强制振动频率的1/2,此时的隔振效率为66.7%。若需进一步提高隔振效率就有一定难度,主要是两个方面的制约:首先,如前述考虑到道路激振悬置系统的自振频率不能太低。其次,如果要降低悬置系统的自振频率则必须采用刚度较低的悬置软垫。对于橡胶软垫,就必须使用硬度较低的橡胶,这将产生下列不利影响:一、软垫刚度降低后发动机的稳定性差,受外力后相对位移大,易导致发动机上零部件与底盘上零部件干涉碰撞。二、软垫的变形量大,在振动中产生大的阻尼功使橡胶发热,寿命下降。三、橡胶硬度降低后其粘结强度将显著下降,悬置软垫易撕裂损坏。1.3.7其它零部件对隔振性能的影响除必须合理选择悬置软垫外,还必须重视悬置软垫底座的刚度,例如与悬置软垫连接的支架、车架和横梁等其结构必须十分坚固,其刚度必须大于悬置软垫的刚度

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 其它办公文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号