力与物体的曲线运动学案

上传人:平*** 文档编号:17050082 上传时间:2017-11-10 格式:DOC 页数:11 大小:621.42KB
返回 下载 相关 举报
力与物体的曲线运动学案_第1页
第1页 / 共11页
力与物体的曲线运动学案_第2页
第2页 / 共11页
力与物体的曲线运动学案_第3页
第3页 / 共11页
力与物体的曲线运动学案_第4页
第4页 / 共11页
力与物体的曲线运动学案_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《力与物体的曲线运动学案》由会员分享,可在线阅读,更多相关《力与物体的曲线运动学案(11页珍藏版)》请在金锄头文库上搜索。

1、力与物体的曲线运动 学案一 典例精析题型 1.(运动的合成与分解问题)若河水的流速大小与水到河岸的距离有关,河中心水的流速最大,河岸边缘处水的流速最小。现假设河的宽度为 120m,河中心水的流速大小为 4m/s,船在静水中的速度大小为 3m/s,要使般以最短时间渡河,则 ( )A船渡河的最短时间是 24sB在行驶过程中,船头始终与河岸垂直C船在河水中航行的轨迹是一条直线D般在河水中的最大速度为 5m/s解析:根据分运动具有独立性和等时性可知,当船头与河岸垂直过河时,时间 t 最短,t=120/3=40s,A 错,B 对;船速是恒定的,但是水流速度与水到河岸的距离有关,合速度的大小和方向都在不断

2、变化,轨迹为曲线,C 错;船在河水中的速度是指合运动的速度最大,D 正确。smv/5432规律总结:1.合运动与分运动具有等时性,分运动具有独立性,这一原理经常应用解决小船过河即平抛运动问题。2.运动的合成与分解的依据仍然是平行四边形定则。3.区分分运动和合运动的基本方法是:合运动是物体的实际运动轨迹。题型 2. (平抛(或类平抛)运动问题)如图所示,AB 为竖直墙壁,A 点和 P 点在同一水平面上。空间存在着竖直方向的匀强电场。将一带电小球从 P 点以速度 向 A 抛出,结果打在墙上的 C 处。若撤去电场,将小球从 P 点以初速 向 A 抛出,也正好打在墙上的 C2点。求:(1)第一次抛出后

3、小球所受电场力和重力之比(2)小球两次到达 C 点时速度之比解析:(1)设 AC=h、电场力为 FQ,根据牛顿第二定律得:F Q+mg=ma第一次抛出时,h= (1 分 )2)(1la第二次抛出时,h= (1 分 )g由、两式得 a=4g (1 分 )所以,F Q:G=3:1 (1 分 )(2)第一次抛出打在 C 点的竖直分速度 y1=a( ) (1 分 )l第二次抛出打在 C 点的竖直分速度 y2=g( ) (1 分 )2第一次抛出打在 C 点的速度 1= (1 分 )1y第二次抛出打在 C 点的速度 2= (1 分 )2)(y所以, 1: 2=2:1 (1 分 )规律总结:平抛(或类平抛)

4、运动处理的基本方法就是把运动分解为水平方向的匀速运动和竖直方向的匀加速运动。通过研究分运动达到研究合运动的目的。题型 3.(竖直平面内的圆周运动问题)如图 15 所示,质量为 m、电量为+q 的带电小球固定于一不可伸长的绝缘细线一端,绳的另一端固定于 O 点,绳长为 ,O 点有一电荷量为+Q(Qq)的l点电荷 P,现加一个水平和右的匀强电场,小球静止于与竖直方向成 =30 0角的 A 点。求:(1)小球静止在 A 点处绳子受到的拉力;(2) 外加电场大小;PABC(3)将小球拉起至与 O 点等高的 B 点后无初速释放,则小球经过最低点 C 时,绳受到的拉力 解析:(1)带电粒子 A 处于平衡,

5、其受力如图,其中 F 为两点电荷间的库仑力,T 为绳子拉力,E 0为外加电场,则Tcos-mg-Fcoss=0 (2 分) 1Fsin+qE 0-Tsin=0 (2 分) 2(2 分)2lQqkF 3联立式解得:有 (2 分)cos2mglqkT 4(2 分)Etan0 5(2)小球从 B 运动到 C 的过程中,q 与 Q 间的库仑力不做功,由动能定理得(2 分)201cmVlqg 6在 C 点时: (2 分)lglkTc22 7联立 、 、 解得: (2 分) 5 6 7 tan3(2lqQ 8审题指导:1.要注意对小球受力分析,不要漏掉库仑力。1. 在处理竖直平面内的圆周运动问题时,一般要

6、用动能定理建立最高点、最低点的速度关系。2. 要注意库仑力始终与运动方向垂直,不做功。题型 4.(万有引力定律及应用)图示是我国的“探月工程”向月球发射一颗绕月探测卫星“嫦娥一号”过程简图 “嫦娥一号”进入月球轨道后,在距离月球表面高为 h 的轨道上绕月球做匀速圆周运动(1)若已知月球半径为 R 月 ,月球表面的重力加速度为 g 月 ,则“嫦娥一号”环绕月球运行的周期为多少?(2)若已知 R 月 = R 地 ,g 月 = g 地 ,则近月卫星的运行速度约为近地卫星运行速度的多少倍?416解析:(1)设“嫦娥一号”环绕月球运行的周期是 T,根据牛顿第二定律得G = mg 月 (2 分)2月RMm

7、G = m (R 月 +h) (2 分)2)(h月 24T解得 T= (2 分)3月月 月g(2)对于靠近天体表面的行星或卫星有 mg= ,v = (2 分)Rm2g由 v= 知, = (1 分)gR地月v地地 月月 Rg中段轨道修正误 差发 射进入奔月轨道进入月球轨道制动开始将 R 月 = R 地 ,g 月 = g 地 代入计算,可知 (0.2) (2 分)41616地月v即近月卫星的运行速度约为近地卫星运行速度的 (0.2)倍规律总结:在利用万有引力定律解决天体运动的有关问题是,通常把天体运动看成匀速圆周运动,其需要的向心力就是天体之间相互作用的万有引力提供。即 rfmTrvmarMG22

8、222 4向题型 5.(卫星与航天问题)如图所示, A 为静止于地球赤道上的物体, B 为绕地球做椭圆轨道运行的卫星, C 为绕地球做圆周运动的卫星, P 为 B、 C 两卫星轨道的交点已知 A、 B、 C 绕地心运动的周期相同相对于地心,下列说法中不正确的是A物体 A 和卫星 C 具有相同大小的加速度B卫星 C 的运行速度大于物体 A 的速度 C可能出现:在每天的某一时刻卫星 B 在 A 的正上方D卫星 B 在 P 点的运行加速度大小与卫星 C 的运行加速度大小相等解析:A、C 两者周期相同,转动角速度 相同,由 可知 A 错;由 可知,ra2rv,B 正确;因为物体 A 随地球自转,而 B

9、 物体转动周期与 A 相同,当 B 物体经过地心cv与 A 连线与椭圆轨道的交点是,就会看到 B 在 A 的正上方,C 对;由 可知,向marMG2,D 正确。cBa题型 6.(天体与航天器的能量问题)重力势能 EPmgh 实际上是万有引力势能在地面附近的近似表达式,其更精确的表达式为 EPGMm/ r,式中 G 为万有引力恒量, M 为地球质量,m为物体质量,r 为物体到地心的距离,并以无限远处引力势能为零 现有一质量为 m 的地球卫星,在离地面高度为 H 处绕地球做匀速圆周运动。已知地球半径为 R,地球表面的重力加速度为 g,地球质量未知,试求:(1 )卫星做匀速圆周运动的线速度;(2 )

10、卫星的引力势能;(3 )卫星的机械能;(4)若要使卫星能依靠惯性飞离地球(飞到引力势能为零的地方) ,则卫星至少要具有多大的初速度?解析:(1)由牛顿运动定律: (2 分)HRvmMG2)(得: (1 分)HRv由引力势能的表达式 : (2 分)得rEP, RGMEP卫星的机械能应该是卫星的动能和势能之和,即得(3 分), HRmGMmvEPKPK,)(21(1 分)HRGM2由机械能守恒定律,对地球与卫星组成的系统,在地球表面的机械能与飞到无限远处的机械能相等。设初速度至少应为 v, (2 分)0,212EmvE1ECBA P解得: (1 分)RGMv2规律总结:在卫星和地球组成的系统内,机

11、械能是守恒的,卫星的动能可通过匀速圆周运动的线速度来求,引力势能在选择了无穷远处为零势能点后,可以用 来求,机械能rGmMEP为两者之和。二、 专题突破针对典型精析的例题题型,训练以下习题。1. 如图甲所示,在一端封闭、长约 lm 的玻璃管内注满清水,水中放一个蜡烛做的蜡块,将玻璃管的开口端用胶塞塞紧然后将这个玻璃管倒置,在蜡块沿玻璃管上升的同时,将玻璃管水平向右移动假设从某时刻开始计时,蜡块在玻璃管内每 1s 上升的距离都是 10cm,玻璃管向右匀加速平移,每 1s 通过的水平位移依次是 2.5cm、7.5cm、12.5cm、17.5cm图乙中,y 表示蜡块竖直方向的位移,x 表示蜡块随玻璃

12、管通过的水平位移,t=0 时蜡块位于坐标原点取重力加速度 g=10m/s2(1 )请在图乙中画出蜡块 4s 内的轨迹;(2 )求出玻璃管向右平移的加速度;(3 )求 t=2s 时蜡块的速度 v点拨:运动的合成与分解问题。(1 )如图(4 分)(2 ) x=at 2 (2 分)a= (2 分)/05smt(3 ) vy= (1 分).vx=at=0.1m/s (1 分)v= (2 分s/4.02y2. 在大风的情况下,一小球自 A 点竖直向上抛出,其运动的轨迹如图 11 所示(小球的运动可看作竖直方向的竖直上抛运动和水平方向的初速 YC为零的匀加速直线运动的合运动) 。小球运动的轨迹上 A、B

13、两点在同一水平线上, M 点为轨迹的最高点。若风力的大小恒定、方向水平向右,小球抛出时的动能为 4J,在 M 点时它的动能为 2J,不计其他的阻力。求:(1 )小球的水平位移 S1 与 S2 的比值。(2 )小球所受风力 F 与重力 G 的比值。 (结果可用根式表示)(3 )小球落回到 B 点时的动能 EKB-点拨:平抛(或类平抛问题)(1 )小球在竖直方向上做竖直上抛运动,故从 A 点至 M 点和从 M 点至 B 点的时间 t 相等,小球在水平方向上做初速为零的匀加速运动,设加速度为 a,则所以21ats2231)(atats312S40y/cm0 10 20 30 40 x/cm30102

14、0甲蜡块乙40y/cm0 10 20 30 40 x/cm301020 (2)小球从 A 点至 M 点,水平方向据动量定理 Ft=mvM0竖直方向据动量定理 Gt=0mv A另据题意 ,联立式解得Jmv21Jv4122G(3)小球在水平方向上 1asM)(22savBx动能 JmvvmEAMByxK 124241 3. 如图所示,有一水平放置的绝缘光滑圆槽,圆半径为 R,处在一水平向右且与圆槽直径 AB 平行的匀强电场中,场强为 E圆槽内有一质量为 m,带电量为q 的小球作圆周运动,运动到 A 点时速度大小为 v,则到达 B 点时小球的向心加速度大小为_;小球做完整的圆周运动最难通过图中的_点

15、。点拨:竖直平面内的圆周运动问题。由动能定理: 221mvRqEB解得:vaB2a4因为小球在水平面内通过 A 点的速度最小,因此通过 A 点最困难。4. 如图所示,半径 R=0.80m 的 光滑圆弧轨道竖直固定,过最低点的半径 OC 处于竖直位41置其右方有底面半径 r=0.2m 的转筒,转筒顶端与 C 等高,下部有一小孔,距顶端h=0.8m转筒的轴线与圆弧轨道在同一竖直平面内,开始时小孔也在这一平面内的图示位置今让一质量 m=0.1kg 的小物块自 A 点由静止开始下落后打在圆弧轨道上的 B 点,但未反弹,在瞬问碰撞过程中,小物块沿半径方向的分速度立刻减为 O,而沿切线方向的分速度不变此后,小物块沿圆弧轨道滑下,到达 C 点时触动光电装置,使转简立刻以某一角速度匀速转动起来,且小物块最终正好进入小孔已知 A、B 到圆心 O 的距离均为 R,与水平方向的夹角均为 =30,不计空气阻力,g 取 l0m/s2求:(1 )小物块到达 C 点时对轨道的压力大小 FC;(2 )转筒轴线

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 试题/考题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号