2021年PCM编译码的实验报告

上传人:亦明 文档编号:153895657 上传时间:2020-12-03 格式:DOC 页数:22 大小:26.05KB
返回 下载 相关 举报
2021年PCM编译码的实验报告_第1页
第1页 / 共22页
2021年PCM编译码的实验报告_第2页
第2页 / 共22页
2021年PCM编译码的实验报告_第3页
第3页 / 共22页
2021年PCM编译码的实验报告_第4页
第4页 / 共22页
2021年PCM编译码的实验报告_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《2021年PCM编译码的实验报告》由会员分享,可在线阅读,更多相关《2021年PCM编译码的实验报告(22页珍藏版)》请在金锄头文库上搜索。

1、PCM编译码的实验报告 实验报告 哈尔滨工程大学教务处 制 实验十一 PCM编译码实验 一、实验目的 1. 掌握PCM编译码原理。 2. 掌握PCM基带信号的形成过程及分接过程。 3. 掌握语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法。 二、 实验仪器 1. 双踪示波器一台 2. 通信原理型实验箱一台 3. M3:PCM与ADPCM编译码模块和M6数字信号源模块 4. 麦克风和扬声器一套 三、实验步骤 1实验连线 关闭系统电源,进行如下连接: 非集群方式 2. 熟悉PCM编译码模块,开关K1接通SL1,打开电源开关。 3用示波器观察STA、STB,将其幅度调至2V。 4. 用示

2、波器观察PCM编码输出信号。 当采用非集群方式时: 测量A通道时:将示波器CH1接SLA(示滤波器扫描周期不超过SLA的周期, 以便观察到一个完整的帧信号),CH2接PCM A OUT,观察编码后的数据与时隙同步信号的关系。 测量B通道时:将示波器CH1接SLB,(示滤波器扫描周期不超过SLB的周期, 以便观察到一个完整的帧信号),CH2接PCM B OUT,观察编码后的数据与时隙同步信号的关系。 当采用集群方式时:将示波器CH1接SL0,(示滤波器扫描周期不超过SL0的周期, 以便观察到一个完整的帧信号),CH2分别接SLA、PCM A OUT、SLB、PCM B OUT以及PCM_OUT,

3、观察编码后的数据所处时隙位置与时隙同步信号的关系以及PCM信号的帧结构(注意:本实验的帧结构中有29个时隙是空时隙,SL0、SLA及SLB的脉冲宽度等于一个时隙宽度)。开关S2分别接通SL1、SL2、SL3、SL4,观察PCM基群帧结构的变化情况。 5. 用示波器观察PCM译码输出信号 示波器的CH1接STA,CH2接SRA,观察这两个信号波形是否相同(有相位差)。 示波器的CH1接STB,CH2接SRB,观察这两个信号波形是否相同(有相位差)。 6. 用示波器定性观察PCM编译码器的动态范围。 将低失真低频信号发生器输出的1KHZ正弦信号从STA-IN输入到MC145503编码器。示波器的C

4、H1接STA(编码输入),CH2接SRA(译码输出)。将信号幅度分别调至大于5VP-P、等于5VP-P,观察过载和满载时的译码输出波形。再将信号幅度分别衰减10dB、20dB、30dB、40dB、45dB,观察译码输出波形。 项目二 实验十一 PCM编译码实验 一、 实验目的 1. 掌握PCM编码原理。 2. 掌握PCM基带信号的形成过程及分接过程。 3. 掌握语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法。 二、 实验仪器 1. 双踪示波器一台 2. 通信原理VI型实验箱一台 3. M3:PCM与ADPCM编译码模块和M6数字信号源模块 4. 麦克风和扬声器一套 三、 实验原理

5、及基本内容 1.点到点PCM多路电话通信原理 脉冲编码调制(PCM)技术与增量调制(M)技术已经在数字通信系统中得到广泛应用。当信道噪声较小时一般用PCM,否则一般用M。目前速率在155MB以下的准同步数字系列(PDH)中,国际上存在A律和u律两种编译码标准系列,在155MB以上的同步数字系列(SDH)中,将这两个系列统一起来,在同一个等级上两个系列的码速率相同,而M在国际上无统一标准,但它在通信环境比较恶劣时显示了巨大的优越性。 点到点PCM多路电路通信原理可用111表示。对于基带通信系统,广义信道包括传输媒质、收滤波器、发滤波器等。对于频带系统,广义信道包括传输媒质、调制器、解调器、发滤波

6、器、收滤波器等。 本实验模块可以传输两路话音信号。采用MC145503编译器,它包括了图111中的收、发低通滤波器及PCM编译码器。编码器输入信号可以是本实验系统内部产生的正弦信号,也可以是外部信号源的正弦信号或电话信号。本实验模块中不含电话机和混合电路,广义信道时理想的,即将复接器输出的PCM信号直接送给分接器。 2.PCM编译模块原理 本模块的原理方框图及电路图如图11-2及图11-3所示。 BSPCM基群时钟信号(位同步)测试点 SL0 PCM基群第0个时隙同步信号 SLA 信号A的抽样信号及时隙同步信号测试点 SLB 信号B的抽样信号及时隙同步信号测试点 SRB 信号B译码输出信号测试

7、点 STA输入到编码器A的信号测试点 STB输入到编码器B的信号测试点 PCM_OUTPCM基群信号输出点 PCM_IN PCM基群信号输入点 PCM A OUT 信号A编码结果输出点 PCM B OUT 信号B编码结果输出点 PCM A IN 信号A编码结果输入点 PCM B IN 信号B编码结果输入点 本模块上有S2这个拔码开关,用来选择SLB信号为时隙同步信号SL1、SL3、SL5、SL6中的任一个。 图11-2各单元与图11-3中的元器件之间的对应关系如下: 晶振 X1:4.096MHZ晶振 分频器1/2U1:74LS193; U6: 74HC4060 抽样信号产生器 U5:74HC7

8、3; U2:74HC164 PCM编译器A U10:PCM编译码集成电路MC145503 PCM编译器B U11:PCM编译码集成电路MCL45503 帧同步信号产生器 U3:8位数据产生器74HC151; U4:A:与门7408 复接器U9:或门74LS32 晶振、分频器1、分频器2及抽样信号(时隙同步信号)产生器构成一个定时器,为两个PCM编译码提供2.048MHZ的时钟信号和8KHZ的时隙同步信号。在实际通信系统中,译码器的时钟信号(即位同步信号)及时隙信号(即帧同步信号)应从接收到的数据流中提取,方法如实验五及实验六所述。此处将同步器产生的时钟信号及时隙同步信号直接送给译码器。 由于时

9、钟频率为2.048MHZ,抽样频率为8KHZ,故PCM-A及PCM-B的码速率都是2.048MB,一帧中有32个时隙,其中一个时隙为PCM编码数据,另外31个时隙都是空时隙。 PCM信号码速率也是2.048MB,一帧中的32个时隙有29个是空时隙,第0个时隙为帧同步码(X1110010)时隙,第2个时隙为信号A的时隙,第1(或第3、第5、或第6由拔码开关S2控制)时隙为信号B的时隙。 本实验产生的PCM信号类似于PCM基群信号,但第16个时隙没有信令信号,第0时隙中的信号与PCM基群的第0时隙的信号也不完全相同。 由于两个PCM编译码器用同一个时钟信号,因而可以对他们进行同步复接。又由于两个编

10、码器输出数据处于不同时隙,故可对PCM-A和PCM-B进行线或。本模块中用或门74LS32对PCM-A、PCM-B及帧同步信号进行复接。在译码之前,不需要对PCM进行分接处理,译码器的时隙同步信号实际上起到了对信号的分路作用。 在通信工程中,主要用动态范围和频率特性来说明PCM编译码器的性能。 动态范围的定义是译码器输出信噪比大于25db时允许编码器输入信号幅度的变化范围。PCM编译码器的动态范围应大于图11-6所示的CCITT建议框架。 当编码器输入信号幅度超过其动态范围时,出现过载噪声,故编码输入信号幅度超过大时量化信噪比急剧下降。MC145503编译码系统输入信号的最大幅度为5V。 由于

11、采用对数压扩技术,PCM编译码系统可以改善小信号的信噪比,MC145503可采用A律13折线对信号进行压扩。当信号处于某一段时,量化噪声不变,因此在同一段落内量化噪声比随信号幅度减小而下降。13折线压扩特性曲线将正负信号分为8段,第1段信号最小,第8段信号最大。当信号处于第一,二段时,量化噪声不随信号幅度变化,因此噪声不随信号幅度变化,因此信号太小时,量化信噪比会小于25db,这是动态范围的下限。MC145503编译码系统动态范围内输入信号最小幅度约为0.025Vpp。 常用1KHZ的正弦信号作为输入信号来测量PCM编译码器的动态范围。 语音信号的抽样信号频率为8KHZ,为了不发生频谱混叠,常

12、将语音信号经截止频率为3.4khz的低通滤波器处理后在进行A/D处理。语音信号的最低频率一般为300hz。MC145503编码器的低通滤波器和高通滤波器决定了编译码系统的频率特性,当输入信号频率超过这两个频率范围时,译码输出信号幅度迅速下降。这就是PCM编译码系统频率特性的含义。 四、 实验步骤 1. 实验连线 关闭系统电源,进行如下连接: 3. 用示波器观察STA、STB,将其幅度调至2V。 4. 用示波器观察PCM编码输出信号。 当采用非集群方式时: 测量A通道时:将示波器CH1接SLA,CH2接PCM A OUT,观察编码后的数据与时隙同步信号的关系。 测量B通道时:将示波器CH1接SL

13、B,CH2 接PCM B OUT,观察编码后的数据与时隙同步信号的关系。 当采用非集群方式时:将示波器CH1接SL0,CH2分别接SLA、PCM A OUT、SLB、PCM B OUT以及PCM_OUT,观察编码后的数据所处时隙同步信号的关系以及PCM信号的帧结构。开关分别接通SL1、SL2、SL3、SL4观察PCM基群帧结构的变化情况。 5用示波器观察PCM译码输出信号 示波器的CH1接STA,CH2接SRA,观察这两个信号波形是否相同(相位差)。 示波器的CH1接STB,CH2接SRB,观察这两个信号波形是否相同(相位差)。 6.用示波器定性观察PCM编译码器的动态范围。 将低失真频信号发

14、生器输出的1khz正弦信号从STA-IN输入到MC145503编码器。示波器的CH1接STA,CH2接SRA。将信号幅度分别调至大于5Vpp、等于5Vpp,观察过载和满载时的译码输出波形。在将信号幅度分别减至10db、20db、30db、40db、45db、50db,观察译码输出波形。 7.两人通话实验 本模块提供两个人的通话信道。由于麦克风输出的信号幅度比较小,需放大到2Vpp左右再由STA和STB输入到两个编码器。译码器输出信号由SRA和SRB输出,将幅度较大,需衰减到适当值后再送给扬声器。 在话筒输入放大电路中,可以通过调整可调电阻R18来改变输出增益。 在语音输出放大电路中,可以通过调整可调电阻R12和R22来改变输出音量。 在实验时,只需将话筒输出信号从MIC_OUT端口连接到STA,再将译码后的语音信号从SRA连接到MIC_IN即可,但需将STA或STB端口的原有连接去除。 五、 实验记录与分析 1.用示波器观察STA、STB,将其幅度调至2V。 实验中,从示波器中可以读出,输入编码器的信号频率存在fA=fB,且频率等于1Khz,幅度等于2V。 2. 用示波

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号