数学分析教程(上册) 常庚哲 史济怀 习题解答 1.1-3.4--修订编选

上传人:l****6 文档编号:149398256 上传时间:2020-10-26 格式:PDF 页数:72 大小:3.62MB
返回 下载 相关 举报
数学分析教程(上册) 常庚哲 史济怀 习题解答 1.1-3.4--修订编选_第1页
第1页 / 共72页
数学分析教程(上册) 常庚哲 史济怀 习题解答 1.1-3.4--修订编选_第2页
第2页 / 共72页
亲,该文档总共72页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《数学分析教程(上册) 常庚哲 史济怀 习题解答 1.1-3.4--修订编选》由会员分享,可在线阅读,更多相关《数学分析教程(上册) 常庚哲 史济怀 习题解答 1.1-3.4--修订编选(72页珍藏版)》请在金锄头文库上搜索。

1、练习题1.1January 21, 20131第第第一一一章章章 实实实数数数和和和数数数列列列极极极限限限1.1数数数轴轴轴1.1.1反反反证证证法法法。设设设r =mn是是是有有有理理理数数数,w是是是无无无理理理数数数。若若若r + w =pq,则则则w =pqmn=pnqmqn为为为有有有理理理数数数,与与与题题题设设设相相相悖悖悖联联联系系系“有有有理理理数数数域域域”的的的概概概念念念,即即即加加加减减减乘乘乘除除除四四四则则则运运运算算算封封封闭闭闭,用用用反反反证证证法法法。1.1.2根根根据据据“对对对任任任意意意实实实数数数,总总总有有有rn x”,仿仿仿照照照本本本节节节

2、的的的方方方法法法构构构造造造一一一个个个有有有理理理数数数列列列pqr1+r22p+1qq 即即即得得得证证证;利利利用用用此此此有有有理理理数数数列列列和和和例例例1的的的结结结论论论构构构造造造p p2+ 1 0时时时,|a| |b| max(|a|,|b|) 0。1.1.8数数数轴轴轴上上上,x到到到1的的的距距距离离离小小小于于于其其其到到到1的的的距距距离离离。1.1.9归归归纳纳纳法法法。n = 2时时时成成成立立立,设设设|ni=1ai| 6ni=1|ai|,于于于是是是|ni=1ai| = |ni=1ai+ an+1| 6 |ni=1ai| + |an+1| 6ni=1|ai

3、| + |an+1| =n+1i=1|ai|1.1.10按按按a b,a = b讨讨讨论论论即即即证证证。max(a,b) =a+b2+|ab|2表表表示示示从从从a,b的的的中中中点点点出出出发发发,向向向前前前(数数数轴轴轴正正正向向向)一一一半半半的的的a,b间间间距距距,正正正好好好是是是a,b中中中较较较大大大者者者。min(a,b) =a+b2|ab|2表表表示示示从从从a,b的的的中中中点点点出出出发发发,向向向后后后(数数数轴轴轴负负负向向向)一一一半半半的的的a,b间间间距距距,正正正好好好是是是a,b中中中较较较小小小者者者。1.1.11证证证明明明:m 6aibi6 Mb

4、im 6 ai6 Mbimni=1bi6ni=1ai6 Mni=1bi1因为b1,b2, ,bn都是正数,ni=1bi 0,所以m 6a1+ a2+ + anb1+ b2+ + bn6 M1.1.12归归归纳纳纳法法法。n = 2显显显然然然;设设设(1 + x)n 1 + nx,又又又x 1,则则则(1 + x)n(1 + x) (1 + nx)(1 + x) 1 + (n + 1)x1.1.13由由由对对对称称称性性性,只只只需需需考考考察察察0 6 x (1 + a1+ + an)(1 + an+1)=1 + a1+ + an+ an+1+ni=1aian+1条件a1,a2, ,an同号

5、使得上式中各项均为正。11.2.7从从从结结结论论论出出出发发发;直接应用上题结论,两式右边即得证;观察(1)式左边恰是(2)式右边的倒数,若1(1a)(1 + a)即得证;而(1 a)(1 + a) =ni=1(1 a2i) 12练习题1.2January 24, 20131第第第一一一章章章 实实实数数数和和和数数数列列列极极极限限限1.1数数数轴轴轴1.2无无无尽尽尽小小小数数数1.3数数数列列列极极极限限限1.3.1“ N”(1)11+n1n12(2)sinnn61n1(3)原原原式式式单单单调调调递递递减减减,故故故可可可取取取2n,(2n)!(2n)2nnn(2n)n(2n)2n=

6、(12)nlnln12(4)|(1)n1n| 1n1(5)|2n+35n1025| = |75n10| 15(7+ 10)(6)|0.99 1| = 10nln1ln10(7)|1+2+nn212| = |(n+1)n2n212| =12n12(8)|12+22+n2n313| = |n(n+1)(2n+1)6n313| =3n2+n6n33n2+n26n3=23n23(9)|arctann 2| =2 arctann 2 ,取取取n tan(2 )(10)2 arctann2=n2arctannn2+n26n2arctann1+n2 arctann maxtan( 2),tan(2 )1.3

7、.2按按按定定定义义义;|an| |a| 6 |an a| ,即得证;逆命题不成立,如an= (1)n1.3.3按按按定定定义义义;取 =12,若k (A ,A + ),则k 1 A k A + k + 1,则(A ,A + )中不含其它整数。1.3.4按按按定定定义义义重重重新新新叙叙叙述述述即即即可可可;(1)不不不能能能;如如如1,1,1,1,即即即an= (1)n,取取取a = 11(2)不不不能能能;如如如12,12,12,12,即即即an=12(1)n,取取取a = 0(3)可可可以以以;极极极限限限定定定义义义中中中任任任意意意正正正数数数的的的“任任任意意意”强强强调调调的的的

8、是是是任任任意意意小小小, 1约约约束束束不不不起起起作作作用用用;(4)可可可以以以;1k 0,使使使得得得n N,n0 n,s.t. |an a| 0或者说an有无限项在区间(a 0,a + 0)以外。1.3.6从从从结结结论论论出出出发发发(观观观察察察法法法);或或或利利利用用用递递递推推推公公公式式式;(1)整理条件易得an+ bn+ cn= an1+ bn1+ cn1= = a + b + c暂不考虑存在性,对条件两边取极限,可以解出limnan= limnbn= limncn=a + b + c3从此结论出发,按定义an|ana + b + c3| =13|2an bn cn|

9、于是考察an bn,an cn由原条件易得an bn= 12(an1 bn1)等比数列|q| 1,得证。(2)将三个条件循环代入得an=12(bn1+ cn1) =12(an2+ cn22+an2+ bn22)=12(an2+cn2+ bn22)=12(an2+ an1)求通项公式,通常以两个等比数列为坐标;令q212q 12= 0解得q1= 12, q2= 1于是an+12an1为公比是q = 1的等比数列,an an1为公比是q = 12的等比数列,于是an=2(an+12an1)+ (an an1)3代入通项公式,再求极限即得证。an的通项公式也可以由两个等比数列之一用初等方法推出。2练

10、习题1.4January 25, 20131第第第一一一章章章 实实实数数数和和和数数数列列列极极极限限限1.1数数数轴轴轴1.2无无无尽尽尽小小小数数数1.3数数数列列列极极极限限限1.4收收收敛敛敛的的的性性性质质质1.4.1唯唯唯一一一性性性、有有有界界界性性性、子子子列列列、四四四则则则运运运算算算、无无无穷穷穷小小小、夹夹夹逼逼逼准准准则则则、保保保号号号性性性(1)不不不能能能判判判定定定;如如如n + n,n + n,(1)n (1)n,n n(2)发发发散散散;反反反证证证法法法,利利利用用用四四四则则则运运运算算算性性性质质质bn= (an+ bn) an(3)发发发散散散;

11、反反反证证证法法法,利利利用用用四四四则则则运运运算算算性性性质质质bn=anbnan(4)不不不能能能判判判定定定;如如如0 n,1nn2(5)不不不能能能判判判定定定;如如如sinn 612n+ sinn 61n+ sinn,n 612n+ n 61n+ n1.4.2按按按定定定义义义;充分靠后时an+1,an (a ,a + )故1 2a a a + an+1ana + a 1 +2a 当a = 0时,2a是任意小;若a = 0,则任取一个|q| 1的等比数列或an=1n 1,1,1,an+1an=nn + 1 1,1,1极限不存在。1.4.3仅仅仅用用用本本本节节节前前前的的的知知知识

12、识识求求求解解解(1)lim3n+(2)n3n+1+(2)n+1= lim13+13(23)n1+(23)n=13(2)lim(1+2+nn+2n2)= limn(n+1)n(n+2)2(n+2)= limn2(n+2)= lim12(1+2n)=-121(3)limn(n + 1 n)= limn(n+1n)(n+1+n)n+1+n= limnn+1+n= lim11+1n+1=12(4)化化化简简简n2+ n n =(n2+ n n)(n2+ n + n)n2+ n + n=nn2+ n + n=11 +1n+ 1当n充分大时,1311+1n+112(13)1n11 +1n+ 11n(12

13、)1n由夹逼准则得原式lim(n2+ n n)1n= 1(5)同同同上上上,当当当n充充充分分分大大大时时时,12 1 1n 1(6)考考考虑虑虑(n)1n 1,lim(n2n+2)1nn1nn1n= lim(n 1 +2n)1n= lim(1 1n+2n2)1n,同同同上上上;(7)同同同上上上,当当当n充充充分分分大大大时时时,12 arctann 2(8)同同同上上上,1 6 2sin2n + cos2n = 1 + sin2n 6 2(9)化化化简简简lim(n2+ 1)18 (n + 1)14(n2+ 1)18+ (n + 1)14(n2+ 1)18+ (n + 1)14=lim(n

14、2+ 1)14 (n + 1)12(n2+ 1)18+ (n + 1)14同理=lim(n2+ 1)12 (n + 1)(n2+ 1)18+ (n + 1)14(n2+ 1)14+ (n + 1)12同理=limn2+ 1 (n + 1)2(n2+ 1)18+ (n + 1)14(n2+ 1)14+ (n + 1)12(n2+ 1)12+ (n + 1)分子为 2n=lim2(n2+ 1)18+ (n + 1)14(n2+ 1)14+ (n + 1)12(n2+1)12+(n+1)n=lim2(n2+ 1)18+ (n + 1)14(n2+ 1)14+ (n + 1)12(1 +1n2)12+

15、 1 +1n=01.4.4求求求极极极限限限(构构构造造造:拆拆拆项项项、添添添项项项)(1)lim1+a+a2+an11+b+b2+bn11a1b1b1a= lim1an1bn1b1a=1b1a(2)lim(1 12+1213+ +1n1n+1)= lim(1 1n+1)= 1(3)lim(1 +12)(1 +13)(1 +1n)(1 12)(1 13)(1 1n)= limn+121n=122(4)lim21+22+31+2+32+3+n1+2+3+n= lim41325243(2+n)(n1)(1+n)n= lim2+n31n=13(5)讨讨讨论论论当当当n为偶数时,lim1n|(1 2

16、) + (3 4) + + (n 1 n)| = lim1n| 1 n2| =12当n为奇数时,lim1n|1 + (2 + 3) + (4 + 5) + + (n 1) + n)| = lim1n|1 + 1 n12| =12(6)化化化简简简lim11 x(1 x)(1 + x)(1 + x2)(1 + x4)(1 + x2n1)= lim11 x(1 x2n)=11 x1.4.5求求求极极极限限限(例例例5)(1)结结结合合合本本本节节节内内内容容容,从从从条条条件件件0 6 a 6 b猜猜猜测测测出出出题题题意意意图图图可可可能能能是是是考考考夹夹夹逼逼逼准准准则则则;(bn)1n6

17、(an+ bn)1n6 (2bn)1n得极限为b;(2)直直直接接接推推推广广广;取取取A = maxa1,a2,am(An)1n6 (an1+ an2+ + anm)1n6 (mAn)1n得极限为A。1.4.6直直直接接接放放放缩缩缩;明显应该用夹逼准则nan 1 nan 6 nan以下为四则运算,略。1.4.7平平平均均均值值值不不不等等等式式式H 6 G 6 A(例例例4)夹逼准则n1a1+1a2+ +1an6na1a2an6a1+ a2+ + ann左边为(1a1+1a2+1ann)1当a = 0时,显然得证;当a = 0时,0 0,A为第r个质数,s.t.1A 于是存在N1= 2 3

18、 5 Ar1 AP (N1)N1=r2 3 5 A易知r 4),r (r 1)!P (N1)N1=r2 3 5 A1 2 3 (r 1)2 3 5 Ar1 A1A 再证从N1往后的所有整数都小于易知:记B为第r + 1个质数,则完全同上的有P (N2)N2=r + 12 3 5 A B1B1A 质数的个数是无穷的,上式可“蛙跳”至无穷,于是只须证明N1到N2之间的整数n满足结论;n N2 P (n) r + 1对于N1 n N2P (n)nr + 1N1 4),r + 1 kn2=1nkn1n2k1 +1 +1n6k1+1+kn26k1 +1 +1n2得证。4练习题1.5January 26,

19、 20131第第第一一一章章章 实实实数数数和和和数数数列列列极极极限限限1.1数数数轴轴轴1.2无无无尽尽尽小小小数数数1.3数数数列列列极极极限限限1.4收收收敛敛敛的的的性性性质质质1.5无无无穷穷穷大大大无界、无界子列、子列、加法和乘法1.5.1放放放缩缩缩法法法;当n充分大时(n 4)P (n) = (n 4)n2+ (5n 6) n2P (n) = n3 4n2 5n 6 n31.5.2也也也是是是习习习题题题1.4.7在在在a为为为无无无穷穷穷大大大情情情况况况下下下的的的特特特例例例;1 + 2 + 3 + + nn=(1 + n)n2n=1 + n21.5.3也也也是是是习习

20、习题题题1.4.7在在在a为为为无无无穷穷穷大大大情情情况况况下下下的的的特特特例例例;12+ 22+ 32+ + n2n2=n(n + 1)(2n + 1)6n2=(1 +1n)2n + 161.5.4分分分子子子有有有理理理化化化;n(n n + 1)(n +n + 1)n +n + 1=n(n (n + 1)n +n + 1=n(1)1 +1 +1nnn + n11.5.6观观观察察察法法法;an+1=an+1an= an1+1an1+1an= =a1+1a1+1a2+1a3+ +1an可考虑调和级数;显然an是递增的正数列,若能证明an n即可;归纳法an+1= an+1an 2an1

21、1an1= 2得证。本本本题题题也也也是是是1.11节节节例例例2的的的一一一个个个实实实例例例:limann存在说明an +;只须说明an满足1.11节例2的条件即可;同上an 2an+1= an+1an6 an+ a1用归纳法an+m+1=an+m+1an+m6 an+ am+1an+m6 an+ am+1am= an+ am+1得证。调调调和和和级级级数数数发发发散散散,其其其和和和趋趋趋于于于+的的的证证证明明明;1.6节例2a2k=1 +12+(13+14)+(15+16+17+18)+(19+ +116)+ +(12k1+ 1+ +12k)1 +12+(14+14)+(18+18+

22、18+18)+(116+ +116)+ +(12k+12k+ +12k)=1 +12+12+12+12+ +12|zk个12= 1 +k21.8节例4an+p an=1(n + 1)+1(n + 2)+ +1(n + p)1n + 1+1n + 2+ +1n + ppn + p于是总有a2n annn + n=12单调递增的数列an不是基本列,不存在极限,故无界,从而an +1.7节习题8、习题102练习题1.6January 26, 20131第第第一一一章章章 实实实数数数和和和数数数列列列极极极限限限1.1数数数轴轴轴1.2无无无尽尽尽小小小数数数1.3数数数列列列极极极限限限1.4收收

23、收敛敛敛的的的性性性质质质1.5无无无穷穷穷大大大1.6单单单调调调数数数列列列单调有界数列必有极限、闭区间套定理1.6.1利利利用用用定定定理理理1.8证证证明明明;(1)当当当n充充充分分分大大大时时时,0 n+92n1 1,xn是是是递递递减减减的的的,有有有下下下界界界0(2)0 1 1n+1 1,xn是是是递递递增增增的的的,只只只须须须证证证明明明有有有上上上界界界;等比数列;由递推公式xn+1= xn(1 +12n)易知xn= x1+x122+x223+ +xn12n考虑等比数列,而xn是递增的正数列,只留下xnxn632+xn22+xn23+ +xn2nxn632+xn221

24、12n11 1232+xn2xn3均值不等式;xn= Gn6 An=(1 +12+ 1 +122+ + 1 +12nn)n=(1 +12+122+ +12nn)n(1 +1n)n e1注(1.7节)en=(1 +1n)n=nk=0Ckn(1n)k=nk=0n!k!(n k)!1nk=nk=01k!n(n 1)(n k + 1)nk=nk=01k!(1 1n)(1 2n)(1 k 1n)单调递增必有极限;取对数,积化和;由ln(1 + a) a或(不用到更后面的知识)由(1 +1n)n e及lnx的单调性得ln(1 +1n)1n结合ex的单调性,于是xn= expln(1 +12n) exp12

25、n xn 1 xn 2而x1=2xn 2 xn+1=2 + xn2 + 2 = 2由归纳法知xn 0,N1 N+,s.t.当n N1时,A aknnan6akn N2 kN1时nkN1anakN1 A 取N = maxN1,N2即得证。21.6.4按按按提提提示示示;0 an(1 an) 614 (1 an)an+1而0 an 1anan(n + 1)!1n+1n!1n(n + 1)!n!1+1nn + 1n!1n(n + 1)nn!(n + 1)nnn n!3练习题1.7February 1, 20131第第第一一一章章章 实实实数数数和和和数数数列列列极极极限限限1.1数数数轴轴轴1.2无

26、无无尽尽尽小小小数数数1.3数数数列列列极极极限限限1.4收收收敛敛敛的的的性性性质质质1.5无无无穷穷穷大大大1.6单单单调调调数数数列列列1.7自自自然然然对对对数数数底底底limn(1 +1n)n= e(1)1.7.1要要要求求求严严严格格格按按按定定定义义义及及及四四四则则则运运运算算算等等等;(1)limn(1 +1n 2)n= limn(1 +1n 2)n2limn1 +1n 1limn1 +1n 1= e(2)limn(1 1n + 3)n= limn(n + 2n + 3)n= limn(11 +1n+2)n= limn1(1 +1n+2)n+2(1 +1n + 2)2=1e(

27、3)limn(1 + n2 + n)n= limn(11 +1n+1)n= limn1(1 +1n+1)n+1(1 +1n + 1)=1e(4)limn(1 +2n)n=limm(1 +1m)m(1 +1m)m= e2,n = 2mlimm(1 +1m+12)m(1 +1m+12)m(1 +22m+1)= e2,n = 2m + 1(1 +1m + 1)m(1 +1m +12)m(1 +1m)m1(5)limn(1 +3n)n=limm(1 +1m)m(1 +1m)m(1 +1m)m= e3,n = 3mlimm(1 +1m+13)m(1 +1m+13)m(1 +1m+13)m(1 +33m+

28、1)= e3,n = 3m + 1limm(1 +1m+23)m(1 +1m+23)m(1 +1m+23)m(1 +33m+2)2= e3,n = 3m + 2(1 +1m + 1)m(1 +1m +13)m(1 +1m)m(6)limn(1 +12n2)4n2= limn(1 +12n2)2n2(1 +12n2)2n2= e21.7.2k是是是有有有限限限数数数;仿仿仿照照照上上上题题题(4)(5)小小小题题题讨讨讨论论论,将将将原原原数数数列列列不不不重重重不不不漏漏漏分分分成成成k个个个子子子列列列,可可可证证证明明明这这这k个个个子子子列列列的的的极极极限限限都都都是是是ek,得得得证

29、证证;limn(1 +kn)n= ek(2)1.7.3正正正文文文用用用二二二项项项展展展开开开,这这这里里里按按按提提提示示示用用用均均均值值值不不不等等等式式式;(1 +1n)n= 1 (1 +1n)(1 +1n)|zn个1 + n (1 +1n)n + 1n+1=(1 +1n + 1)n+1(3)1.7.4按按按提提提示示示;证明1an严格递增,均值不等式(nn + 1)n+1= 1 (nn + 1)(nn + 1)|zn+1个1 + (n + 1) nn+1n + 1n+2(4)1.7.5利利利用用用前前前两两两题题题结结结论论论;左左左边边边严严严格格格递递递增增增地地地趋趋趋于于于

30、e,右右右边边边严严严格格格递递递减减减地地地趋趋趋于于于e(1 +1n)n e (1 +1n)n+1(5)1.7.6利利利用用用上上上题题题结结结论论论;对对对数数数函函函数数数严严严格格格递递递增增增;对上式取对数即得1n + 1 ln(1 +1n)1n(6)1.7.7利利利用用用上上上题题题结结结论论论最最最便便便捷捷捷;或或或者者者利利利用用用第第第2题题题结结结论论论,将将将第第第3、4题题题中中中的的的1n替替替换换换为为为kn,再再再经经经过过过第第第5题题题也也也可可可得得得证证证;右边ln(1 +kn) ln(1 +1n)k= kln(1 +1n)1n + k+1n + k

31、1+ +1n + 1kn + k结论kn + k ln(1 +kn)kn(7)1.7.8利利利用用用第第第6题题题结结结论论论;令(6)式中n = 1,2, ,n;然后将n个不等式加起来即得12+13+ +1n + 1 ln(n + 1) = ln(1 +1n)(1 +1n 1)(1 +11) 1 +12+ +1n(8)1.7.9利利利用用用上上上题题题结结结论论论;由(8)式易知0 xn 1 1n + 1 0得证;欧拉常数 = limnxn= limn(1 +12+ +1n ln(n + 1)(9)1.7.10利利利用用用上上上题题题结结结论论论; = limxn相当于xn= + n1 +1

32、2+13+ +1n=ln(n + 1) + + n将n记作n= n+ ln(n + 1) lnn = n+ ln(1 +1n)即得limn1ne1+12+13+1n= limn1neln(n+1)+n= limn1n neen= e(10)用定义证明en 1 0,N N+,s.t.当n N时,1 en 1 + ,ln(1 ) n ln(1 + )另外,xn递增地趋于,n 0;由(6)式得n+1 n=1n + 1 lnn + 1n 0;由(5)式得1n+1e1+12+13+1n+11ne1+12+13+1n=nn + 1e1n+1 1故(10)左边递减地趋于e,则 e,当n = 1时,e e1.

33、7.11利利利用用用上上上题题题结结结论论论;(n + 1e)n n! 1n + 1e1+12+13+1n+1于是1e112e1+1213e1+12+131ne1+12+13+1n1n + 1e1+12+13+1n+1将这n个不等式相乘,可构造出n!和(n + 1)n1n!exp1 +(1 +12)+ +(1 +12+ +1n)(1n + 1e1+12+13+1n+1)n(n + 1)nn!exp1 +12+13+ +1n + 1+1 +12+13+ +1n + 1+1 +12+13+ +1n + 1+1 +12+13+ +1n + 1n+1行1 +12+13+ +1n + 1+1+1 +12

34、+1 +12+13+ +1n=exp1 + 2 12+ 3 13+ + (n + 1) 1n + 1(1 +12+13+ +1n + 1)=expn + 1 (1 +12+13+ +1n + 1)据此可先证右边,只须(n + 1)n+1n! (n + 1)expn + 1 (1 +12+13+ +1n + 1)en(n + 1)ee1+12+13+1n+1ee1+12+13+1n+1n + 14右边即(10)式在n + 1时的情况,递减,n = 1时取等号,右边得证;左边只与右边相差一个n + 1因子,考虑将(10)式改写为limn1n + 1e1+12+13+1n= e可能是递增的,完全仿照

35、前面的过程(对称的),即可证明左边。由(5)式得1n+1e1+12+13+1n1ne1+12+13+1n1=nn + 1e1n 1果然;于是12e113e1+1214e1+12+131ne1+12+13+1n11n + 1e1+12+13+1n将这n 1个不等式相乘得1n!exp1 +(1 +12)+ +(1 +12+ +1n 1)(1n + 1e1+12+13+1n)n1(n + 1)n1n!exp1 +12+13+ +1n+1 +12+13+ +1n+1 +12+13+ +1n+1 +12+13+ +1nn行1 +12+13+ +1n+1+1 +12+1 +12+13+ +1n 1=exp

36、1 + 2 12+ 3 13+ + n 1n(1 +12+13+ +1n)=expn (1 +12+13+ +1n)据此证左边,只须(n + 1)nn! (n + 1)expn (1 +12+13+ +1n)6enn + 16e1+12+13+1n16e1+12+13+1nn + 1右边即(10)的改写式,递增,n = 1时取小于号,左边得证;利用第5题的结论;形似(5)式;令(5)式中n = 1,2,3, ,n,再将n个不等式相乘21(32)2(43)3(n + 1n)n en(21)2(32)3(43)4(n + 1n)n+15得证;构造法;观察(11)式结构,阶乘和n次方,考虑是否有xn

37、xn1 n ynyn1化简后正好是(5)式,得证;积分法;阶乘和n次方,取对数化简nln(n + 1) n ln1 + ln2 + + lnn (n + 1)ln(n + 1) n考虑到lnx dx = xlnx x右边即xlnx xn+11左边与右边相差ln(n + 1),考察误差限;中间表示成黎曼和的形式;对于函数lnx,将区间1,n + 1顺次n等分,每个小区间长度为1,取每个小区间左端点的函数值作黎曼和A;则A等于曲线下一系列长方形的面积之和,小于曲线下面积,于是得到右边;误差小于ln(n + 1),于是得到左边。取每个小区间右端点的函数值作黎曼和B,则大于曲线下面积,组成B的每一个长

38、方形都比A相应的部分高出一小块长方形,一共高出ln(n + 1),所以长方形的底边长均为1,于是B A = ln(n + 1)1.7.12利利利用用用上上上题题题结结结论论论;要要要求求求不不不用用用到到到(连连连续续续函函函数数数)求求求极极极限限限的的的复复复合合合法法法则则则;对(11)式取极限,再用夹逼准则,即得limn(n!)1nn=1e(12)计算右边时用到ne 1易用定义和对数函数的单调性证明nn + 1 1可用1.3节例4和夹逼准则证明nn nn + 1 n2n =n2 nn1.7.13直直直接接接写写写出出出;e = 1 +11!+12!+ +1n!+nn!n,nn + 1

39、n 1转化命题,即证1(n + 1)! e sn 06sn+m sn=1(n + 1)!+1(n + 2)!+ +1(n + m)!=1(n + 1)!(1 +1(n + 2)+ +1(n + 2)(n + m)1(n + 1)!(1 +1(n + 2)+ +1(n + 2)m1)1(n + 1)!11 1n+2e sn61(n + 1)!n + 2n + 11n!n1.7.14根根根据据据上上上题题题结结结论论论;n!(e sn) 0,N N+,s.t.当n N时,|an aN| N时,|an am| 6 |an aN| + |am aN| 2 显然,将m固定为N即可1.8.2按按按定定定义

40、义义;(1)不不不是是是基基基本本本列列列;如如如Hn= 1 +12+ +1n|Hn+p Hn| =1n + 1+1n + 2+ +1n + ppn(2)是是是基基基本本本列列列;n,p N+,(当n充分大时),|an+p an| pn2(2)取p = 1得|an+1 an| 61n21于是?an+p an?6?an+p an+p1?+?an+p1 an+p2?+ +?an+1 an?61(n + p 1)2+1(n + p 2)2+ +1n261(n + p 1)(n + p 2)+1(n + p 2)(n + p 3)+ +1n(n 1)=1n 11n + p 11n 1 0,N N+,s

41、.t.当n N时,|an+p an| o(n) (3)记p = m n即得证。1.8.3证证证明明明下下下列列列数数数列列列收收收敛敛敛;(1)由由由2题题题的的的结结结论论论;?an+p an?=?(1)n+11(n + 1)2+ (1)n+21(n + 2)2+ + (1)n+p1(n + p)2?61(n + 1)2+1(n + 2)2+ +1(n + p)26pn2(2)由由由第第第2题题题的的的结结结论论论;?bn+p bn?=?an+1qn+1+ an+2qn+2+ + an+pqn+p?6|an+1qn+1| + |an+2qn+2| + + |an+pqn+p|6M(|qn+1

42、| + |qn+2| + + |qn+p|)6M|qn+1|11 |q| ,与p无关(3)由由由第第第2题题题的的的结结结论论论;?an+p an?=?sin(n + 1)x(n + 1)2+sin(n + 2)x(n + 2)2+ +sin(n + p)x(n + p)2?61(n + 1)2+1(n + 2)2+ +1(n + p)26pn2(4)如如如上上上题题题;?an+p an?=?sin(n + 1)x(n + 1)(n + 1 + sin(n + 1)x)+sin(n + 2)x(n + 2)(n + 2 + sin(n + 2)x)+ +sin(n + p)x(n + p)(n

43、 + p + sin(n + p)x)?61(n + 1)n+1(n + 2)(n + 1)+ +1(n + p)(n + p 1)=1n1n + p61n 0,N N+,s.t.当n N时,|an+p an| |sn+p sn| 0,s.t.n N+,p N+,s.t.|an+p an| 0(4)1.8.6Bolzano-Weierstrass定定定理理理;Bolzano-Weierstrass定理的意思是“在有界的区间内,(可列)无限项必然形成聚点”;对于数列,收敛是只有一个聚点,那么发散必然有两个以上的聚点;不是基本列,则有上题(4)式,先取akn a,则kn充分大时有|akn a| 0

44、,取为子列alnal1= akn1+p1,(取kn2 kn1+ p1)al2= akn2+p2,于是aln每一项都在区间(a 02,a +02)外,区间外有无限项,再从aln中取出收敛子列,极限必然也在(a 02,a +02)外。3练习题1.9February 2, 20131第第第一一一章章章 实实实数数数和和和数数数列列列极极极限限限1.1数数数轴轴轴1.2无无无尽尽尽小小小数数数1.3数数数列列列极极极限限限1.4收收收敛敛敛的的的性性性质质质1.5无无无穷穷穷大大大1.6单单单调调调数数数列列列1.7自自自然然然对对对数数数底底底e1.8基基基本本本列列列1.9确确确界界界原原原理理理

45、1.9.1按按按定定定义义义;(1)1,0,3,8,9,12,supE = 12,inf E = 1(2)1n: n N+,supE = 1,inf E = 0(3)n : n N+,supE = +,inf E = 1(4)sinn: n N+,supE = 1,inf E = 0(5)x : x2 2x 3 0,supE = 3,inf E = 1(6)x : |lnx| 1,supE = e,inf E = e11.9.2习习习题题题1.7.5结结结论论论;(1 +1n)n e 0, N N+,s.t.当n N时,(1 +1n)n e 单调有界数列的极限就是其相应一个确界。1.9.3利利

46、利用用用1.3节节节例例例4的的的结结结论论论;极限是1,考察单调性n1nS(n + 1)1n+1nn+1S(n + 1)nn(1 +1n)n从n 3起递减2,94,6427,e1.9.4利利利用用用练练练习习习题题题1.8.6的的的结结结论论论;仿照正文中证明Bolzano-Weierstrass定理时用到的引理1.1,从任意一个数出发,可以找出递增的和递减的两个单调数列,不论是否有界,数列都发散(无界当然发散,有界时以上两个子列收敛于不同的极限值)。2练习题1.11February 5, 20131第第第一一一章章章 实实实数数数和和和数数数列列列极极极限限限1.1数数数轴轴轴1.2无无无

47、尽尽尽小小小数数数1.3数数数列列列极极极限限限1.4收收收敛敛敛的的的性性性质质质1.5无无无穷穷穷大大大1.6单单单调调调数数数列列列1.7自自自然然然对对对数数数底底底e1.8基基基本本本列列列1.9确确确界界界原原原理理理1.10有有有限限限覆覆覆盖盖盖定定定理理理1.11上上上下下下极极极限限限1.11.1上上上下下下极极极限限限是是是尾尾尾部部部的的的性性性质质质,与与与前前前有有有限限限项项项无无无关关关;(1)(2)(3)(4)按按按奇奇奇偶偶偶性性性讨讨讨论论论,均均均只只只有有有两两两个个个聚聚聚点点点(5)取取取n = 4m + 1和和和n = 4m + 3,分分分别别别

48、得得得到到到(6)只只只有有有两两两个个个极极极限限限点点点n21 + n212,12,1,(7)极极极限限限为为为0,根根根据据据1.7节节节习习习题题题12结结结论论论limn(n!)1nn=1e1.11.2基基基本本本结结结论论论;无无无限限限的的的情情情况况况均均均可可可单单单独独独讨讨讨论论论;不不不考考考察察察0 , 之之之类类类的的的情情情况况况;(1)liminfnan+ liminfnbn6 liminfn(an+ bn)6liminfnan+ limsupnbnlimsupnan+ liminfnbn6 limsupn(an+ bn) 6 limsupnan+ limsup

49、nbn(1)1重点考察有界的情况;“去掉”有限项,只剩下聚点,an+ bn的上下极限只可能由an,bn各自的聚点生成,两端是显然的;中间部分以下极限为例,以a为基础生成an+ bn一个聚点(意思是以形成a的一个子列ak为基础+对应的bk项,再用列紧性定理),其结果不会超过a+ b,最小的聚点更是不大于a+ b;用 N语言叙述即可,但较繁琐;利用定理1.16和1.17;写出来也较简洁;对于任何数列的任意项总有n= infnkxn记作= inf xk,xk+1, 6 xk6 supxk,xk+1,记作= supnkxn= n对于数列an+ bn也有该式,对式子分别取上下极限(由定理1.16和1.1

50、7)两端就得到了证明;中间部分以下极限为例,注意a是聚点,于是 0,ak a+ bk6 supbk,bk+1,故ak+ bk a+ + supbk,bk+1,对此式取下极限,再令 ,即得证;利用定理1.15;命题考察的都是数列尾部的性质;以上半节为例,由定理1.15,a 左边只有有限项,于是当n充分大时,有a an同理bn b+ 于是a + bn an+ bn 00,an 0;对于上极限来说,既然存在无限个非负项,就不必考虑负项的情况,便有limsupnan= limsupncn下半节得证;易看出上半节完全对称;对于a6 0的情况,设法化为正的情况;因为必定存在常数d + a 0令dn= d

51、+ an就化为了的情况(由第2题(2)结论);1.11.3利利利用用用2题题题结结结论论论;本节习题自然是利用上下极限的各种性质;本节实际给出了上下极限的三种定义(定义1.13,定理1.15,定理1.17)和几个性质(定理1.16和第2题结论);由(2)(3)得liminfn(a2n+ 2an 2an)=liminfn2an= 2limsupnan=liminfna2nlimsupn(a2n+ 2an 2an)=limsupn2an= 2liminfnan=limsupna2n注意到子列的聚点集e是原聚点集E的子集,故liminfnan6liminfna2nlimsupnanlimsupna2

52、n代入得2liminfnan6 limsupnan6 12liminfnan只能是limsupnan= liminfnan= 0得证。31.11.4根根根据据据结结结论论论用用用定定定理理理1.15;上极限不大于1,说明1 + 右边只有有限项 0,N N+,s.t.当n N时,nan 1 + 即nan1 + 0,N N+,s.t.当n N时,A an an1bn bn1 A + 注意bn严格递减地趋于0,上式分子为正,利用练习题1.1.11的结论,将n + 1,n + 2, ,n + p的式子“相加”A an+p anbn+p bn A + 2令p 得(用到条件an 0)A anbn A +

53、A liminf(anbn)6 limsup(anbn) 0的情况(a 01再观察0 6 x13a=13(x 3a)(2 3ax3a2x2)恰有0 6(2 3ax3a2x2)6 2于是得证0 6 x13a 623(x 3a)1.13.3完完完全全全仿仿仿照照照上上上题题题;只须讨论a 0的情况(a mAxm1(m 1)xm1(x A) + AmAxm1(m 1)xm1(x A)A(xm1 Am1)(m 1)xm1A(xm2+ Axm3+ + Am2)(m 1)xm1Axm2+ A2xm3+ + Am1只须取x A即可右边每一项都不大于左边再观察0 6 x1 A=1m(x A)(m 1 AxA2

54、x2 Am1xm1)恰有0 6(m 1 AxA2x2 Am1xm1)6 m 1于是得证0 6 x1ma 6m 1m(x ma)源于二项展开式,设xm= a则(x + )m a设法缩小x + ,可利用二项展开得到不等式,取前两项依然有xm+ mxm1aa xmmxm1x + a xm+ mxmmxm1=1m(m 1)x +axm1)再进行验证。1.13.4仿仿仿照照照第第第2目目目,分分分割割割求求求和和和;An=ni=1(ina)3an=a4n4ni=1i3213+ 23+ + n3=12 2 + 22 3 + + n2 (n + 1) ni=1i2=0 1 2 + 1 2 3 + + (n

55、1) n (n + 1) ni=1i2+1 2 + 2 3 + + n (n + 1)=141 2 3 4 0 + 2 3 4 5 1 + + (n 1) n (n + 1) n + 2 (n 2) ni=1i2+131 2 3 0 + 2 3 4 1 + + n (n + 1) n + 2 (n 1)=14(n 1) n (n + 1) (n + 2) 16n(n + 1)(2n + 1) +13n (n + 1) (n + 2)1.13.5无无无穷穷穷级级级数数数求求求和和和;(1)n=11n(n + 1)= limn(1 12+1213+ +1n1n + 1)= 1(2)本本本节节节不不

56、不讨讨讨论论论级级级数数数的的的敛敛敛散散散性性性,在在在级级级数数数和和和存存存在在在的的的前前前提提提下下下S=13+232+333+ +n3n+ 13S=132+233+ +n 13n+ 两式相减得23S=13+132+133+ +13n+ 1.13.6单单单调调调有有有界界界数数数列列列必必必有有有极极极限限限,定定定理理理1.8;1.13.7注注注意意意到到到an正正正是是是部部部分分分和和和数数数列列列Sn的的的相相相邻邻邻两两两项项项之之之差差差,用用用反反反证证证法法法,部部部分分分和和和数数数列列列将将将不不不是是是基基基本本本列列列,Cauchy收收收敛敛敛原原原理理理;调

57、调调和和和数数数列列列即即即逆逆逆命命命题题题的的的一一一个个个反反反例例例,1.6节节节例例例2。3SK2.1May 11, 20131111 ?4442111? ?YYY5552.1888?NNN?2.1.1?f (x)=2.1.2www,fn(a) =(a,nf (a),n2.1.3UUU1D D : R 12_”?2.1.4UUU?=555nkkk1”?!888?2_NNN?3n!2.1.5LLL?=XXX1 2,2 3, ,n 1 n,n 11SK2.2May 11, 20131111 ?4442111? ?YYY5552.1888?NNN?2.2888?2.2.1nnn2.22.2

58、.2nnn2.2?/p0)n?uz(?na0,a1,a2,an?l?pn?uz(?“k?2.2.3nnn2.19992.3lA?z?m?kndup?knTm?“L?Akn?,f8m?N?kn?kn?f8?2.2.4,NNN?S(0,1)?A?A(0,1)0,1?2.2.5zzz?k N,x 0,1),s.t.x 6= x1,x2,xk2.2.6yyye,?AUCX?K7k,f8A1UCX?l0,)A1z?l?:12uA1zL?%?BKBUCX?l0,)nnn:(?B?l?:l0,)?l0,)m?lllkkknnnzzz?1SK2.3August 9, 20131111 ?4442111? ?Y

59、YY5552.1888?NNN?2.2888?2.32.3.1UUU11,12R13R2,14?x R : x 6= 2k 12,x 6= 2k?2.3.2:ef f (a) = aKd(f (a) = f (f f (a) = f f (f (a)?f (a)f f?:d5f (a) = aekf (b) = bKf (f (b)=f (b) = b=f f (b)d5b = a2.3.3:=f (a),f (b) = a,b2.3.4:1X?a,b?(f (a) = bf (b) = af (x) = xf (x) =(0x = 01xf (x) = x12kkkf (x)4O f f (

60、x)4Oe3,x?f (x) xKx = f f (x) = f (f (x) f (x)nf (x) b 0adx +bdy=1PAx + By=1, (A,B) = 1A=q1B + r1, 0 r1 B, r1= 0B = (A,B) = 1,?(x = 0,y = 1)(?y(1)B=q2r1+ r2, 0 r2 r1, r2= 0r1= (A,B) = 1,?(x = 1,y = q1)(?y(2)r1=q3r2+ r3, 0 r3 r2, r3= 0r2= (A,B) = 1(3)rk2=qkrk1+ rk, 0 rk rk1, rk= 0rn1= (A,B) = 1(4)7k,r

61、N= 1”?rn4=qn2rn3+ rn2, 0 rn2 rn3, %(5)rn3=qn1rn2+ rn1, 0 rn1 rn2(6)rn2=qnrn1+ rn, 0 rn xPl = y xf (y) = f (x + y x) = f (x)2.3.8UUUO?sinx2= sin(x + T)2sinx + cos2x = sin(x + T) + cos2(x + T)?T?x2.3.9555f (x) =f (x) + f (x)2+f (x) f (x)232.3.10UUU555?=2.3.11VVV-?uuu?y=sinhx2y=ex ex0=e2x 2yex 1ex=2y p

62、4y2+ 42, 5?ex 0x=ln?y +py2+ 1?4SK2.4August 9, 20131111 ?4442111? ?YYY5552.1888?NNN?2.2888?2.32.4?4442.4.1444 0, 0, s.t. 0 x0 x |f (x) 1| 0, 0, s.t. 0 |x x0| |f (x) A| 1?|f (x)| |A|?6 |f (x) A| 2|f2(x) A2| = |f (x) + A|f (x) A| 0, ? A?pf (x) A?=|f (x) A|?pf (x) +A?A +AA4 ? |A|?3pf (x) 3A? 0 0, 0, s.t

63、. 0 |x x0| |f (x) A| 1|x3 8| = |x 2|x2+ 2x + 4| ?32+ 6 + 4? 2|x 3x2 916| = |1x + 316|max?|16 16|?5 ? 6=6 5 3?x4 1x 1?= |x + 1|x2+ 1| (1 + + 1)?22+ 1? 4|1 + 2x 1| =2x1 + 2x + 12(1 + )2 0, 0, s.t. 0 x x0 |f (x) A| ?x 1x2 1?=?x 1x + 1?0 + 1 2.4.54441UUU?f (2+) = 4,f (2) = 2a2dddnnn2.11a = 22.4.6444?4AK

64、for =A a2, =y2.4.7444?m4OA,BK? =B A2, ? = min1,2f (x) A + B2 f (y)22.4.8444|NNN555kyf (x) Ax0 xn x xn x0, f (x) 6 f (xn) 6 Ay2Y%OK4x x0 xn x x0, x0 xn |f (x) A| |f (xn) A| 0, n N, xn?x0,x01n?, s.t.|xn x0| 02.4.10iii?222(JJJ0?An=?1n,2n,n 1n?K?-ET?K|n2.9duAnk8u?(?no3n?(x0,x0 n)A1,A2,An?:u?ux0?xn6= x0:

65、 n = 1,2,3,l, ?okxn (x0,x0 n)l?f (xn) = 01n + 1,1n + 2, ; o, f (xn) 1n2.4.11oooKKK$!EEEKKK112(x1)(x1)(x1)x 03(x1)(xm1+x+1)x1 m4(x1)(xm1+x+1)(x1)(xn1+x+1)mn51+x1x(1+x+1)126(1+x)(1x)x(1+x+1x)27(1+x)1/m11+x1=1(1+x)1m1/m+(1+x)1/m+11m8x1+x21+xm1x1 1 + 2 + + m =(1+m)m291+nmx+12n(n1)(mx)21+mnx+12m(m1)(nx)2

66、x2+ k0 =12n(n 1)m212m(m 1)n210hTm1Tm1+T+1+Sn1Sn1+S+1i?x nmmn2.4.12YYY%OOOKKK!?“1?1x?61x?1x?+ 1l?1 x x?1x?6 120x 2+ = 2358x 2 = 14324x = 3, x 12.4.13|SSSKKK1.711113KKK(e = 1 +11!+12!+ +1n!+nn!n, nn + 1 n 1nsin(2n!e)=nsin?2?N +nn?nsin1n + 1nsin?2 nn? 0, X 0, s.t. x X |f (x) 13| ?x2+ 13x2 x + 113?=?x +

67、 29x2 3x + 3?|x| + 29x2 |3x| 3|2x|9x2 3x2 3x2=23|x| , ?|x|2?3x + 22x + 332?=?6x + 4 3(2x + 3)2(2x + 3)?=?54x + 6?5|4x| 6 , ?|x|3?x px2 a?=?x2?x2 a?x +x2 a?|a|x , ?x4?x + 1 x 1?=?x + 1 (x 1)x + 1 +x 1?2x + 1 02.5.5dddKKK?uuusin?pn2+ 1 n + n?= sin?pn2+ 1 n?cosn + cos?pn2+ 1 n?sinn 02.5.6oooKKK$!EEEKKK

68、!-4441ab2231415sinx6cosx7e28limx01 cosx + cosx cosxcos2xcosnxx2=12+ limx01 cos2xcosnxx2=12+222+ +n22=112n(n + 1)(2n + 1)9limx0cosx2cosx4cosx2nsinx2n?x2n= limx012nsinx2n?x2n= 110|4?(limx+xtan?2 arctanx?=limx+xcot(arctanx) =limx+xtan(arctanx)= 12.5.7n f (x) =+, x 1e, x = 10, x 12.5.8444?555limx0?nXk=1

69、aksinkx?sinx?61?nXk=1aklimx0?sinkx?sinx?6122.5.9Cauchy?nnn?nnn2.9!nnn2.10?yyy2.5.10yyy3SK2.6August 21, 20131111 ?4442111? ?YYY5552.1888?NNN?2.2888?2.32.4?4442.5444LLL?/2.6?2.6.1“?”1x 0?ddd?2x ?10?31x?3?4x 1?5x ?2?61x1 ?7UUU?555?|x| 0?ddd?8UUU?555?|x| 0?16?9UUU?555?|x| ?ddd10x 0?ddd?11x 0+?12?12x 0?d

70、dd?13x ?12?14x ?n(n+1)2?2.6.2o()?,444?oooKKK$KKK1limo() + o()= 0 + 0 = 02limo(c)= limo(c)cc = 0 c = 013lim(o()kk=?limo()?k= 0k= 04lim?11 + 1 + ?/ = lim2(1 + )= 02.6.3555?ddd?OOO?1limx0xtan4xsin3x(1 cosx)= limx0x5x312x2= 22limx0x212x2?1 + x2+ 1? = 13limx0x412x2(1 + cosx)?1 + x4+ 1? = 04limx0tan(tanx)

71、tanxtanxx= 15limx01 + x + x2 12x h1 +n1 + x + x2+?n1 + x + x2?2+ +?n1 + x + x2?n1i =12n2练习题2.7August 22, 20131第第第一一一章章章 实实实数数数和和和数数数列列列极极极限限限2第第第二二二章章章 函函函数数数的的的连连连续续续性性性2.1集集集合合合的的的映映映射射射2.2集集集合合合的的的势势势2.3函函函数数数2.4函函函数数数的的的极极极限限限2.5极极极限限限过过过程程程的的的其其其他他他形形形式式式2.6无无无穷穷穷小小小与与与无无无穷穷穷大大大2.7连连连续续续函函函数数数2

72、.7.1连连连续续续的的的定定定义义义;(1)f (x 0)不不不存存存在在在;(2)除除除0以以以外外外的的的所所所有有有实实实数数数;(3)连连连续续续;(4)不不不一一一定定定,如如如可可可去去去间间间断断断点点点;(5)f (x) = 0,否否否则则则不不不连连连续续续;2.7.2按按按定定定义义义或或或者者者几几几何何何直直直观观观;(1)连连连续续续;(2)跳跳跳跃跃跃;(3)连连连续续续;(4)跳跳跳跃跃跃;(5)可可可去去去;2.7.3定定定义义义;a = 0,b = 1,c = 02.7.4极极极限限限的的的四四四则则则运运运算算算性性性质质质;可可可举举举例例例跳跳跳跃跃跃

73、间间间断断断点点点;(1)f + g不不不连连连续续续,反反反证证证;fg不不不一一一定定定;(2)均均均不不不一一一定定定;2.7.5极极极限限限的的的局局局部部部保保保号号号性性性;2.7.6反反反之之之不不不一一一定定定,可可可举举举例例例跳跳跳跃跃跃间间间断断断点点点;2.7.7极极极限限限的的的局局局部部部保保保号号号性性性;任取一点x,只有f (x) g (x)或f (x) = g (x),12.7.8连连连续续续的的的定定定义义义;分分分类类类讨讨讨论论论x是是是连连连续续续点点点和和和间间间断断断点点点的的的情情情况况况;2.7.9先先先证证证F存存存在在在,F (x+)存存存

74、在在在;再再再用用用反反反证证证法法法说说说明明明F (x) = F (x+)不妨设f递增;利用定理2.9证明F的存在性tn= x x+, 取单调子列tkn x+,有下界f (tkn) l,由极限定义f (tn) l由极限的局部保号性,反证法说明F的单调性(递增),完全同上地,F (x+)也存在;若存在F (x) F (x+),则tn= x x+, f (tn) F (x)取Tk= x x+, 则F (Tk) F (x+), F (Tk), sm(k) Tk, s.t.f (sm(k) F (Tk)于是可构造出sn= x x+, f (sn) F (x+)2.7.10利利利用用用问问问题题题2

75、.3.1的的的结结结论论论以以以及及及连连连续续续性性性;实实实数数数可可可以以以看看看作作作有有有理理理数数数列列列的的的极极极限限限;2SK2.8August 29, 20131111 ?4442111? ?YYY5552.1888?NNN?2.2888?2.32.4?4442.5444LLL?/2.6?2.7YYY2.8YYY444OOO2.8.1?0fff1232103751114?KKK-a = 1,n = n + 1=?n(n+1)24n(n1)2an2888BBBx2 2ax + a2/xn nan1x + (n 1)an?xn2+2axn3+3a2xn4+kak1xnk1/xn

76、xn2axn1a2xn22axn1a2xn22axn14a2xn22a3xn33a2xn22a3xn33a2xn26a3xn33a4xn44a3xn33a4xn4.kak1xnk+1(k 1)akxnkkak1xnk+12kakxnkkak+1xnk1(k + 1)akxnkkak+1xnk1.1+(n 2)an3x+(n 1)an2/nan1x+(n 1)an?L.(n 2)an3x3(n 3)an2x2.(n 2)an3x32(n 2)an2x2(n 2)an1x.(n 1)an2x2(2n + 2)an1x.(n 1)an2x22(n 1)an1x(n 1)an002.8.2?0ffft

77、n 1 = (t 1)?1 + t + t2+ + tn1?;1nm2m3mn41n!2.8.3nnn?nnn2.9?ddd?OOO1e22e2314e325e1617e8e129ex2210e211cota2.8.4?ex1x2SK2.9September 1, 20131111 ?4442111? ?YYY5552.1888?NNN?2.2888?2.32.4?4442.5444LLL?/2.6?2.7YYY2.8YYY444OOO2.9YYY5552.9.1*?/ ?EEE|x2 x1|1sn=12n, tn=12n+/22sin+sin 6 2, sinsin = 2cos2sin26

78、 |x2 x1|;30 6 (a b)36 a3 b34sinsin 6 |x22 x21|5sn= 2n, tn= 2n +1n2.9.2?min1,22.9.3kkkyyykkk.444mmm?YYYYYY?e3sn,tnKd?;5nskn l a,b?tknl?6?tknskn?+?sknl?tkn lb?Cauchy?ng2?T1,T2,T3nmTT1,T3OT2?m:KT1+ T2+ T3Y?:|x1 x2| = min1,2,37,=zT1+ T2+ T3S?nsinx2?sn=p2n +2, tn=2n2.9.4Cauchy?nnnY/ 0K(a,)S?:x1,x2ok?f (x

79、1) f (x2)? d=f (a+)1SK2.10September 1, 20131111 ?4442111? ?YYY5552.1888?NNN?2.2888?2.32.4?4442.5444LLL?/2.6?2.7YYY2.8YYY444OOO2.9YYY5552.10kkk444mmm?YYY2.10.1SSSKKK2.9.42.10.2SSSKKK2.9.4kkkmmmkkk444mmmmmmXXXx x2.10.3kkk444mmm2.10.4Cauchy?nnn2.10.5|KKK(|f + gYYY, ?min1,22.10.6nnnyyy333yyySSSnnnggg)?2

80、.10.7?lll?:|(x)| |xn|1kkk?kkkKKKnnn2UUUYYY?lll?:nnn2.10.8888BBB5x1= 0PFn(x) = f (x) f?x +1n?ef?12?6= f (0), KF2(0)F2?12? 01ef?13?6= f (0), KF3(0)?F3?13?+ F3?23? 0ef?1n?6= f (0), KFn(0)?Fn?1n?+ Fn?2n?+ + Fn?n 1n? 0Fn+ + Fn?0n2dn=?y2.10.9”UUU?www555000nnnf (+) = +, a f (a),+)uf f3a,+)k?2.10.10mmmuuukk

81、knnn?555ggg2.10.11/www,f (x)YYYxvvv?f (x) x2SK2.11July 19, 20141111 ?4442111? ?YYY5552.1888?NNN?2.2888?2.32.4?4442.5444LLL?/2.6?2.7YYY2.8YYY444OOO2.9YYY5552.10kkk444mmm?YYY2.11444eee444:4?:n2.272.11.1eee444“LLL?:000nnn?:2.11.2?*?11,12,+3,+2.11.3|:?VVVggg?1X ?.Oe.2?Kn2.28?1?,?35Nk.?f?|xn x0| 1n? ?1n?

82、of (xn x0)?:?u?uLlimsupf (x) =dn2.27?2?1SK2.12August 15, 20141111 ?4442111? ?YYY5552.1888?NNN?2.2888?2.32.4?4442.5444LLL?/2.6?2.7YYY2.8YYY444OOO2.9YYY5552.10kkk444mmm?YYY2.11444eee4442.12bbbyyy:n2.32.12.1UUU2.12.2OOO?yyynnn2.30n2.29?yPx,f (x),f2(x),f3(x) kXe91=Umvf (J1) J2, f (J2) J1$n2.3=?I(2.12.3k

83、kkKKK(?(888BBB)?2.12.4000nnnfi(I0) Ii2SK3.1August 15, 20141111 ?4442111? ?YYY5553111nnn ?3.1?3.1.1UUUf0(0)3.1.2UUUf0(0)f (bn) f (an)bn an=f (bn) f (0) f (an) + f (0)bn an=bnbn anf (bn) f (0)bn+anbn anf (an) f (0)an=f (bn) f (0)bn+f (an) f (0)an5?0 , 10periodic0 6 12SK3.1August 16, 20141111 ?4442111?

84、 ?YYY5553111nnn ?3.1?3.2?OOO3.2.1GGG13x2 2212x1/2+ x23asinx + bcosx435x2/5+ sinx + xcosx56x+ abexpbx61xlna+ axblna7sinx2+ 2x2cosx28abcos2bx+ab1 + a2x2913x2/3cosx + x1/3sinx103x2(ax + b) + a?x3+ 1?11a(cx + d) c(ax + b)(cx + d)212axlnalnx+ax/x13lnx+114axlnatanx+ax/cos2x1511x2+2xarctanx+x2/?1 + x2?16(l

85、nx + 1)?1 + x2? 2x2lnx(1 + x2)217(sc)(c+s)(cs)(s+c)(c+s)2= 1 31+2sc18xcosx sinxx2+sinx xcosxsin2x19(lnx + 1)sinx + xlnxcosx203sin2xcosx21aeaxcosbx besinbx221 + x?a2+ x2?1/2x + (a2+ x2)1/2=1a2+ x223x1x2242x1+(1+x2)225121qx +px +x1 +121px +x?1 +12x?#126s+cc+s27coslnx sinlnx + x?sinlnx 1x coslnx 1x?= 2

86、sinlnx28asinxlna cosx291 + xarcsinx/1 x21 x230y0= (expxxlnx)0= xxx(xxlnx)0= xxx?xx(lnx + 1)lnx + xx1?31sinhx32coshx3.2.2Sn= 1 + x + + xn=1 xn+11 x1S0n=(n + 1)xn(1 x) + 1 xn+1(1 x)2=nxn+1 (n + 1)xn+ 1(1 x)22S0n?x =12?=n2n1n + 12n2+ 43+1?2 1 + 3 2x + 4 3x2+ + (n + 1) nxn1= S”n+13.2.3UUUf (x) f (a)x a=

87、f (x + T) f (a + T)(x + T) (a + T)3.2.4UUUf (x) f (a)x a=(f(x)+f(a)xaf(x)f(a)xa/u?:K:?/uyK:?3.2.5/www|444?555555Cf (x) f (a)f (x) f (b)C5?a x 0?k =ax20y y0= k(x x0)I?u(X = 2x0,0)9(0,Y = 2y0)?2a23.2.8?y2= 2ax?:(a/2,0)=?”?y 0k = f0(x0) =pa/2x0Ry y0=1k(x x0)?:?:(X,Y )(X a/2) 1 + (Y 0)?1k?= 0X+a/22 x0=

88、k?Y +02?Y = y03.2.9?CCCzzzNNNCCCzzzcm3/sV=13h232hV=9h2h=9 122 13SK3.1August 19, 20141111 ?4442111? ?YYY5553111nnn ?3.1?3.2?OOO3.3ppp?3.3.1GGG1ex2(2x) 99K ex2(2x)(2x) 2ex222xax+ x2axlna 99K 2ax+ 2xaxlna + 2xaxlna + x2ax(lna)2312?a2 x2?1/2(2x) 99K 2?a2 x2?3/2x ?a2 x2?1/24?a +x?212x1/299K?a +x?312x1+?a

89、 +x?214x3/251cos2x99K2sinxcos3x62xarctanx + 1 99K 2arctanx + 2x11 + x27cosxsinx99K1sin2x81 arcsinx ?1 x2?1/2(x)1 x2=11 x2+xarcsinx(1 x2)3/299K ?1 x2?2(2x) +?arcsinx + x?1 x2?1/2?1 x2?3/2 xarcsinx32?1 x2?1/2(2x)(1 x2)3193x2cosx x3sinx 99K 6xcosx 3x2sinx 3x2sinx x3cosx10lnx + 1 99K1x3.3.2UUU12e2x199K

90、4e2x1211 + x299K (1 + x)2(2x)32sinxcosx = sin2x 99K 2cos2x3.3.3Leibniz1?100?(1 + x)?11 x?(10)+?101?11 x?(9)= (1 + x)19!210(1 x)21/2+10 17!29(1 x)19/22?100?x2?11 x?(8)+?101?2x?11 x?(7)+?102?2?11 x?(6)=x2 8!(1 x)9+20x 7!(1 x)8+90 6!(1 x)73.3.4XXX|?zzz)a(x 2)4+ b(x 2)3+ c(x 2)2+ d(x 2) + ee=f (2)d=f0(2

91、)2c=f”(2)4b=f3(2)a=33.3.5UUUKKK888AAA/?x x0000F (x)YF (x0+) = c = f (x0)F0(x)YF0+(x0) =limxx0+a(x x0)2+ b(x x0) + c F (x0)x x0= b = f0(x0)F”(x0)F”+(x0)=limxx0+2a(x x0) + b F0(x0)x x0= 2a = f”(x0)2SK3.4August 26, 20141111 ?4442111? ?YYY5553111nnn ?3.1?3.2?OOO3.3ppp?3.4nnn3.4.1yyy777:KdRollen(,) 0,1k7

92、:?d)?7:U13.4.2Rollennn+4duYoU?0nf (a + 1) = f (b 2)3.4.3Lagrangennn1|sinx siny| = |(cos)(x y)|2xp yp= pp1(x y), y x3lna lnb =1(a b), b a4arctana arctanb =11 + 2(a b), b 0, X 0, s.t. x X f0(x) 0, X 0, s.t. x,y X f (x) f (y)x y= f0() f (x) = f (y) + f0()(x y)”?y x,f (x)x=f (y) + f0()(x y)x f0?yC,x? 0,

93、Y 0, s.t. x Y ?f(x)f(Y )xY= f0( Y )?2?xYx? Y, s.t. x X ?f (Y )x?23.4.7/www,f (x)f0().m?=Lagrangenx 0, ?y (0,a), 0 y s.t. 0 x aMf0()(x y) aMf0() aMx y 0?!g,?Lagrangenf (2)2f (1)1=?f ()?0(2 1) = 023.4.9Cauchynnn?xf (x)?0=f (x) xf0(x)f2(x)?f (x)x?0=xf0(x) f (x)x21eUK?Cauchyn?1f (x)?0=1f2(x)?1x?0=1x2?af

94、 (b) bf (a)a b=f(b)bf(a)a1b1af () f0() af (b) bf (a)a b=0P f () f0() K=0/?0|Rollenf () f0() K2=0 (a,b) ”?a,b 0K 0f (x)x+Kx?vn3.4.10”www,Lagrangennn5K7k:(c,f (c)3(a,f (a) (b,f (b)?f (c) f (a)c af (b) f (c)b co?uf (b) f (a)b a3.4.11?0?3.4.12rrr(“l?n?N?yK(“g,yn?yy (x) cosx sinx = g (x)“wwg (x) 6= 0Uguy

95、g (x)vy” + y = 0Sl(u?uu?5|l(cosx,sinx)v?XJ(?kg (x) = llLG?g span(cosx,sinx)?N?,K8J“?g2=y2+ ly + l2g02=y02+ l0y0+ l02g2+ g02=y2+ y02+ ly + l0y0+ l2+ l02C=K + ly + l0y0+ l2+ l02z?5?l0= lwwU?l?)y5?(y + sinx)2+ (y + sinx)02=C(y + cosx)2+ (y + cosx)02=C3?/CLG?=?N?,y sinx + y0cosx=Cy cosx y0sinx=C”?cosx 6= 0ysin2xcosx+ y0sinx=Csinxcosxy cosx y0sinx=Cysin2xcosx+ y cosx=Csinxcosx+ Cy sin2x + y cos2x=C sinx + C cosxK8J(U?nyy0?,5|= l,?)53.4.13nnn)(/?vvvkkk111aaammm:000dLHospitalK3.6!yLagrangendf(n)(0)=limx0f(n1)(x) f(n1)(0)x 0=limx0f(n)(), (0,x)or(x,0)=lim0f(n)()4

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > PPT模板库 > 总结/计划/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号