《“三角形的内角和”教学方案_小学四年级数学教案》由会员分享,可在线阅读,更多相关《“三角形的内角和”教学方案_小学四年级数学教案(6页珍藏版)》请在金锄头文库上搜索。
1、 精品范文“三角形的内角和”教学方案_小学四年级数学教案 简要提示: 本课教学内容是国家课程标准苏教版小学数学四年级下册第2829页的“三角形的内角和”。本课教学先通过计算三角尺的3个内角的度数和,激发学生的好奇心,进而引发“三角形内角和是180o”的猜想,再通过组织操作活动验证猜想,得出结论。最后让学生利用三角形内角和的知识求三角形中未知角的度数,并通过量角的度数的操作,进一步证实结论的正确性。因此本课教学需要引导学生度量、计算和实验,在活动中感知三角形内的三个角的度数之和是定数为180度,并能运用它解决有关实际问题,激发学生主动参与、自主探索的意识,锻炼学生的动手操作能力,发展学生初步的逻
2、辑推理能力和空间观念。 教学流程: 流程1:认识正方形的内角、内角和 流程2:认识长方形的内角、内角和 流程3:探索直角三角形的内角和 流程4:探索锐角三角形、钝角三角形的内角和 流程5:抢答游戏 流程6:完成“试一试” 流程7:完成“想想做做”第1题 流程8:完成“想想做做”第6题 流程9:拓展题 流程10:交流收获 第一段:认识内角、内角和 流程1:认识正方形的内角、内角和 师:同学们,这是一张正方形纸。正方形有几个角?都是什么角?多少度?四个角的和呢?(学生活动)正方形有四个直角,都是90o,四个角的和是360o。正方形的这四个角啊叫作它的内角,所以我们可以说正方形的内角和是360o。
3、流程2:认识长方形的内角、内角和 师:那长方形的内角和是多少度呢?(学生活动)长方形四个内角都是直角,内角和也是360 o。 第二段:探索三角形的内角和 流程3:探索直角三角形的内角和 师:这是一把三角尺。这个三角形有几个内角?内角和是多少度,你知道吗?(学生活动) 师:三个内角的度数分别是90o、60o、30o,内角和是180o。再看这把三角尺,这个三角形的内角和又是多少度呢? 90o+45o+45o=180o,内角和也是180 o。 师:三角尺的形状是直角三角形,根据3个内角的度数,我们可以算出这两种直角三角形的内角和是180o,那其它的直角三角形内角和也是180o吗? 师:课前老师请每个
4、同学准备了一个直角三角形,举起来相互看看,形状、大小可以不同,但必须是直角三角形。你能想办法知道手里的直角三角形的内角和吗?(学生活动) 师:我们一起来看一看有哪些好办法:(课件出示)把直角三角形的两个锐角拼到直角上,和直角完全重合,这说明直角三角形中两个锐角的和是90o,那么直角三角形的内角和就是180 o。也可以把直角三角形的三个角撕下来拼在一起,形成了一个平角,证明了直角三角形的内角和是180 o。还可以利用直角三角形和长方形、正方形的关系来推导,两个完全一样的直角三角形可以拼成一个长方形或正方形,长方形和正方形的内角和是180o,直角三角形的内角和是它们内角和的一半,180 o。同学们
5、,这些方法你想到了吗?一定还有不少同学是先用量角器量内角的度数再求内角和,但是因为用量角器测量角的度数时,容易产生误差,所以得出的内角和有些可能不是180o,而用折、拼、转化推导的方法可以准确地证明直角三角形的内角和是180o。 流程4:探索锐角三角形、钝角三角形的内角和 师:我们证明了直角三角形的内角和是180o。那其他三角形,它们的内角和呢?先猜测一下。(学生交流) 师:当然我们还是要凭事实说话。同学们,要验证你的想法,还需要证明哪几类三角形呢?对,三角形按角的大小分,还有锐角三角形和钝角三角形。有办法知道这两类三角形的内角和吗? 师:同学们现在应该有经验了,知道测量的过程中容易产生误差,
6、那么选用其他的方法来检验会更准确。请拿出课前任意剪的一个锐角三角形或一个钝角三角形,这次只给你们2分钟的时间,比一比谁的动作最快,方法最巧。(学生活动) 师:同学们可以用前面证明直角三角形内角和的方法:拼一拼、折一折。把三个内角拼在一起是一个平角,说明内角和是180 o。还能想到别的方法吗?同学们可以尝试着把新问题转化成已经掌握的知识,利用已知去研究未知呀。回忆一下,我们可以运用已经知道的长方形、正方形内角和来推导直角三角形内角和,那是不是也可以利用直角三角形的内角和,再去推导钝角三角形和锐角三角形的内角和呢? 师:以钝角三角形为例,作一条底边上的高,把钝角三角形分成两个直角三角形。一个直角三
7、角形的内角和是180o,两个就是360o。而钝角三角形的内角和指的是它三个内角的度数和,所以要从两个直角三角形内角和360o中去掉一个平角180o,钝角三角形的内角和是180o。锐角三角形也是如此。 师:刚才我们采用多种方法,证明了三角形内角和是180o。同学们不仅知其然,而且知其所以然了。当然也有的同学通过研究,否定了自己原来的猜想,形成了正确认识,也确认了三角形的内角和是180o。其实,很多数学家的伟大发现都是从大胆猜想开始的,再通过锲而不舍的钻研,就取得了了不起的成就。同学们,如果你们在学习上也能大胆猜想,发扬锲而不舍的精神,也一定会成功的! 流程5:抢答游戏 师:现在老师和同学们来玩一
8、个抢答游戏。请听清题目直接报得数。 1.这个三角形的内角和是多少度?(学生抢答)2.把这个三角形平均分成两个小三角形,每个小三角形的内角和都是多少度?(学生抢答)3.把这个小三角形再分成一大一小两个三角形,这两个三角形的内角和分别是多少度?(学生抢答)4.把两个小三角形拼成一个大三角形,这个大三角形的内角和是多少度?(学生抢答)5.3个小三角形拼成一个更大的三角形,它的内角和呢?(学生抢答) 师:同学们,这个游戏对你有启发吗?(学生交流) 第三段:巩固应用,解决问题 流程6:完成“试一试” 师:了解了三角形的内角和,可以解决哪些数学问题呢?请同学们把课本翻到28页,看试一试,在书上独立完成。(
9、学生练习) 师:你们是这样考虑的吗?因为三角形的内角和是180o,所以3的度数等于180o减1的度数再减2的度数,或者用180o减去1和2的度数和。 流程7:完成“想想做做” 第1题 师:请用这样的方法再试着练习三道题。(学生活动) 第三个三角形是直角三角形,在计算未知角的度数时有简便方法:因为直角三角形两个锐角的度数和是90o,因此可以直接用90o减55o。 流程8:完成“想想做做” 第6题 师:请同学们考虑回答下面两个问题。(1)一个直角三角形中最多有几个直角?为什么?(2)一个钝角三角形中最多有几个钝角?为什么?(学生思考) 师:这两个问题我们都可以用三角形的内角和的知识来回答。同学们可
10、以反过来推想,如果有两个直角或两个钝角,这个图形的内角和就大于180o了,不可能是三角形。 流程9:拓展题 师:同学们已经会根据三角形的内角和,求其中一个未知角的度数了,下面试着求出图中3的度数?(学生活动) 师:根据三角形的内角和我们可以先求出4是100o,3的度数等于180o减4的度数。同学们算出得数后再留意会发现,3的度数正好等于1、2的度数和。同学们3是三角形外面的一个角叫做三角形的外角。在初中几何中有这样的概括:三角形的外角等于和它不相邻的两个内角的和。随着同学们年级的增高,今后会遇到更多的用三角形内角和的知识来解决的几何问题。 师:同学们,我们已经用三角形内角和的知识解决了一些简单的数学问题,那么在生活中用得到它吗?当然了,工人师傅可以用它来检验零件是否合格,还可以用这个知识来考虑如何修补已经损坏了的三角形物品,感兴趣的同学课后可以再收集了解,做生活的有心人。 第四段:交流收获,全课总结 流程10:课堂总结 师:今天这节课同学们有什么收获,说出来和大家交流分享。(学生交流) 师:对,我们知道了,一个三角形,不论在什么情况下,它的三个内角的和都是180度;利用这一知识,我们能够解答一些有关三角形角度的实际问题。