机电传动控制-电力电子技术2-整流电路课件

上传人:我*** 文档编号:146102913 上传时间:2020-09-26 格式:PPT 页数:43 大小:4.21MB
返回 下载 相关 举报
机电传动控制-电力电子技术2-整流电路课件_第1页
第1页 / 共43页
机电传动控制-电力电子技术2-整流电路课件_第2页
第2页 / 共43页
机电传动控制-电力电子技术2-整流电路课件_第3页
第3页 / 共43页
机电传动控制-电力电子技术2-整流电路课件_第4页
第4页 / 共43页
机电传动控制-电力电子技术2-整流电路课件_第5页
第5页 / 共43页
点击查看更多>>
资源描述

《机电传动控制-电力电子技术2-整流电路课件》由会员分享,可在线阅读,更多相关《机电传动控制-电力电子技术2-整流电路课件(43页珍藏版)》请在金锄头文库上搜索。

1、电力电子技术 第3章 整流电路 3.1 单相可控整流电路 3.2 三相可控整流电路,引言,整流电路(Rectifier)是电力电子电路中出现最早的一种,它的作用是将交流电能变为直流电能供给直流用电设备。 整流电路的分类 按组成的器件可分为不可控、半控、全控三种。 按电路结构可分为桥式电路和零式电路。 按交流输入相数分为单相电路和多相电路。 按变压器二次侧电流的方向是单向或双向,分为单拍电路和双拍电路。,3.1 单相可控整流电路,3.1.1 单相半波可控整流电路 3.1.2 单相桥式全控整流电路 3.1.3 单相桥式半控整流电路,3.1.1 单相半波可控整流电路,图3-1 单相半波可控整流电路及

2、波形,带电阻负载的工作情况 变压器T起变换电压和隔离的作用,其一次侧和二次侧电压瞬时值分别用u1和u2表示,有效值分别用U1和U2表示,其中U2的大小根据需要的直流输出电压ud的平均值Ud确定。 电阻负载的特点是电压与电流成正比,两者波形相同。 在分析整流电路工作时,认为晶闸管(开关器件)为理想器件,即晶闸管导通时其管压降等于零,晶闸管阻断时其漏电流等于零,除非特意研究晶闸管的开通、关断过程,一般认为晶闸管的开通与关断过程瞬时完成。,改变触发时刻,ud和id波形随之改变,直流输出电压ud为极性不变 但瞬时值变化的脉动直流,其波形只在u2正半周内出现,故称“半波”整流。加之电路中采用了可控器件晶

3、闸管,且交流输入为单相,故该电路称为单相半波可控整流电路。整流电压ud波形在一个电源周期中只脉动1次,故该电路为单脉波整流电路。 基本数量关系 :从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度称为触发延迟角,也称触发角或控制角。 :晶闸管在一个电源周期中处于通态的电角度称为导通角。 直流输出电压平均值 随着增大,Ud减小,该电路中VT的移相范围为180。 通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式,简称相控方式。,3.1.1 单相半波可控整流电路,(3-1),3.1.1 单相半波可控整流电路,u,图3-2 带阻感负载的单相半波可控整流电路及其波形,带阻感负载的工

4、作情况 阻感负载的特点是电感对电流变化有抗拒作用,使得流过电感的电流不能发生突变。 电路分析 晶闸管VT处于断态,id=0,ud=0,uVT=u2。 在t1时刻,即触发角处 ud=u2。 L的存在使id不能突变,id从0开始增加。 u2由正变负的过零点处,id已处于减小的过程中,但未降到零,因此VT仍处于通态。 t2时刻,电感能量释放完毕,id降至零,VT关断并立即承受反压。 由于电感的存在延迟了VT的关断时刻,使ud波形出现负的部分,与带电阻负载时相比其平均值Ud下降。,3.1.1 单相半波可控整流电路,电力电子电路的一种基本分析方法 把器件理想化,将电路简化为分段线性电路。 器件的每种状态

5、组合对应一种线性电路拓扑,器件通断状态变化时,电路拓扑发生改变。 以前述单相半波电路为例 当VT处于断态时,相当 于电路在VT处断开, id=0。当VT处于通时, 相当于VT短路。两种情 况的等效电路如图3-3所 示。,图3-3 单相半波可控整流电路的分段线性等效电路 a) VT处于关断状态 b) VT处于导通状态,3.1.1 单相半波可控整流电路,若为定值,角大,越小。 若为定值,越大,越大 ,且 平均值Ud越接近零。为解决上述矛 盾,在整流电路的负载两端并联一 个二极管,称为续流二极管,用 VDR表示。 有续流二极管的电路 电路分析 u2正半周时,与没有续流二极管 时的情况是一样的。 当u

6、2过零变负时,VDR导通,ud 为零,此时为负的u2通过VDR向VT 施加反压使其关断,L储存的能量保 证了电流id在L-R-VDR回路中流通, 此过程通常称为续流。 若L足够大,id连续,且id波形接 近一条水平线 。,图3-4 单相半波带阻感负载有续流二极管的电路及波形,基本数量关系 流过晶闸管的电流平均值IdT和有效值IT分别为: 续流二极管的电流平均值IdDR和有效值IDR分别为 其移相范围为180,其承受的最大正反向电压均为u2的峰值即 。 续流二极管承受的电压为-ud,其最大反向电压为 ,亦为u2的峰值。 单相半波可控整流电路的特点是简单,但输出脉动大,变压器二次侧电流中含直流分量

7、,造成变压器铁芯直流磁化。为使变压器铁芯不饱和,需增大铁芯截面积,增大了设备的容量。,3.1.1 单相半波可控整流电路,(3-5),(3-6),(3-7),(3-8),3.1.2 单相桥式全控整流电路,a),带电阻负载的工作情况 电路分析 闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对桥臂。 在u2正半周(即a点电位高于b点) 若4个晶闸管均不导通,id=0,ud=0, VT1、VT4串联承受电压u2。 在角处给VT1和VT4加触发脉冲,VT1和VT4即导通,电流从电源a端经VT1、R、VT4流回电源b端。 当u2过零时,流经晶闸管的电流也降到零,VT1和VT4关断。 在u2负半周,

8、仍在角处触发VT2和VT3,VT2和VT3导通,电流从电源b端流出,经VT3、R、VT2流回电源a端。 到u2过零时,电流又降为零,VT2和VT3关断。,VT2和VT3的=0处为t=,3.1.2 单相桥式全控整流电路,单相桥式全控整流电路的特点: 由于在交流电源的正负半周都有整流输出电流流过负载,故该电路为全波整流。 一个周期内,整流电压波形脉动2次,属于双脉波整流电路。 变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在直流磁化问题,变压器绕组的利用率也高。,基本数量关系 晶闸管承受的最大正向电压和反向电压分别为 和 。 整流电压平均值为: =0时,Ud

9、= Ud0=0.9U2。=180时,Ud=0。可见,角的移相范围为180。 向负载输出的直流电流平均值为:,3.1.2 单相桥式全控整流电路,(3-9),(3-10),流过晶闸管的电流平均值 : 流过晶闸管的电流有效值为: 变压器二次侧电流有效值I2与输出直流电流有效值I相等,为 由式(3-12)和(3-13)可见: 不考虑变压器的损耗时,要求变压器的容量为S=U2I2。,3.1.2 单相桥式全控整流电路,(3-11),(3-12),(3-13),(3-14),3.1.2 单相桥式全控整流电路,图3-6 单相桥式全控整流电流带阻感负载时的电路及波形,带阻感负载的工作情况 电路分析 在u2正半周

10、期 触发角处给晶闸管VT1和VT4加触发脉冲使其开通,ud=u2。 负载电感很大,id不能突变且波形近似为一条水平线。 u2过零变负时,由于电感的作用晶闸管VT1和VT4中仍流过电流id,并不关断。 t=+时刻,触发VT2和VT3,VT2和VT3导通,u2通过VT2和VT3分别向VT1和VT4施加反压使VT1和VT4关断,流过VT1和VT4的电流迅速转移到VT2和VT3上,此过程称为换相,亦称换流。,3.1.2 单相桥式全控整流电路,基本数量关系 整流电压平均值为: 当=0时,Ud0=0.9U2。=90时,Ud=0。晶闸管移相范围为90。 晶闸管承受的最大正反向电压均为 。 晶闸管导通角与无关

11、,均为180,其电流平均值和有效值分别为: 和 。 变压器二次侧电流i2的波形为正负各180的矩形波,其相位由角决定,有效值I2=Id。,(3-15),带反电动势负载时的工作情况 当负载为蓄电池、直流电动机的电枢(忽略其中的电感)等时,负载可看成一个直流电压源,对于整流电路,它们就是反电动势负载。 电路分析 |u2|E时,才有晶闸管承受正电压,有导通的可能。 晶闸管导通之后,ud=u2, ,直至|u2|=E,id即降至0使得晶闸管关断,此后ud=E。 与电阻负载时相比,晶闸管提前了电角度停止导电, 称为停止导电角。 当时,触发脉冲到来时,晶闸管承受负电压,不可能导通。,3.1.2 单相桥式全控

12、整流电路,图3-7 单相桥式全控整流电路接反电动势电阻负载时的电路及波形,(3-16),3.1.2 单相桥式全控整流电路,触发脉冲有足够的宽度,保证当t=时刻有晶闸管开始承受正电压时,触发脉冲仍然存在。这样,相当于触发角被推迟为。 在角相同时,整流输出电压比电阻负载时大。 电流断续 id波形在一周期内有部分时间为0的情况,称为电流断续。 负载为直流电动机时,如果出现电流断续,则电动机的机械特性将很软。,3.1.2 单相桥式全控整流电路,为了克服此缺点,一般在主电 路中直流输出侧串联一个平波 电抗器。 电感量足够大使电流连续,晶 闸管每次导通180,这时整流 电压ud的波形和负载电流id的 波形

13、与电感负载电流连续时的 波形相同,ud的计算公式亦一样。 为保证电流连续所需的电感量L可由下式求出:,图3-8 单相桥式全控整流电路带反电动势负载串平波电抗器,电流连续的临界情况,(3-17),3.1.3 单相桥式半控整流电路,图3-11 单相桥式半控整流电路,有续流二极管,阻感负载时的电路及波形,与全控电路在电阻负载时的工作情况相同。 带电感负载 电路分析(先不考虑VDR ) 每一个导电回路由1个晶闸管和1个二极管构成。 在u2正半周,处触发VT1,u2经VT1和VD4向负载供电。 u2过零变负时,因电感作用使电流连续,VT1继续导通,但因a点电位低于b点电位,电流是由VT1和VD2续流 ,

14、ud=0。 在u2负半周,处触发触发VT3,向VT1加反压使之关断,u2经VT3和VD2向负载供电。 u2过零变正时,VD4导通,VD2关断。VT3和VD4续流,ud又为零。,3.1.3 单相桥式半控整流电路,续流二极管VDR 若无续流二极管,则当突然增大至180或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,称为失控。 有续流二极管VDR时,续流过程由VDR完成,避免了失控的现象。 续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。,3.

15、2 三相可控整流电路,3.2.1 三相半波可控整流电路 3.2.2 三相桥式全控整流电路,3.2 三相可控整流电路引言,其交流侧由三相电源供电。 当整流负载容量较大,或要求直流电压脉动较小、易滤波时,应采用三相整流电路。 最基本的是三相半波可控整流电路。 应用最为广泛的三相桥式全控整流电路、以及双反星形可控整流电路、十二脉波可控整流电路等。,3.2.1 三相半波可控整流电路,a),图3-13 三相半波可控整流电路共阴极接法电阻负载时的电路及=0时的波形,电阻负载 电路分析 为得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波流入电网。 三个晶闸管按共阴极接法连接,这种接法触发电路有公共端,连线方便。 假设将晶闸管换作二极管,三个二极管对应的相电压中哪一个的值最大,则该相所对应的二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压。 自然换相点 在相电压的交点t1、t2、t3处,均出现了二极管换相,称这些交点为自然换相点。 将其作为的起点,即=0。,3.2.1 三相半波可控整流电路,=0(波形见上页) 三个晶闸管轮流导通120 ,ud波形为三个相电压在正半周期的包络线。 变压器二次绕组电流有直流分量。 晶闸管电压由一段管压降和两段线电压组成,随着增大,晶闸管承受的电压中正

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > PPT模板库 > PPT素材/模板

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号