延迟焦化反应部分 课件

上传人:我*** 文档编号:145958700 上传时间:2020-09-24 格式:PPT 页数:77 大小:688.50KB
返回 下载 相关 举报
延迟焦化反应部分 课件_第1页
第1页 / 共77页
延迟焦化反应部分 课件_第2页
第2页 / 共77页
延迟焦化反应部分 课件_第3页
第3页 / 共77页
延迟焦化反应部分 课件_第4页
第4页 / 共77页
延迟焦化反应部分 课件_第5页
第5页 / 共77页
点击查看更多>>
资源描述

《延迟焦化反应部分 课件》由会员分享,可在线阅读,更多相关《延迟焦化反应部分 课件(77页珍藏版)》请在金锄头文库上搜索。

1、延迟焦化之反应部分,第一节 概 述,焦炭化(简称焦化)是深度热裂化过程,也是处理渣油的手段之一。它又是唯一能生产石油焦的工艺过程,是任何其他过程所无法代替的。尤其是某些行业对优质石油焦的特殊需求,致使焦化过程在炼油工业中一直占据着重要地位。,焦化工艺背景 原油变重变稠变劣,原油中的硫、康氏残炭,密度都升高;我国进口劣质原油比例增加 炼厂深度加工要求高,并且可以回炼炼厂污泥,使炼厂实现零排放 柴油需要量日趋增加,柴汽的要求高。焦化的柴汽比1.9,最大可达2.32.4 我国是发展中国家,资金仍紧张 重质渣油燃料油需求下降 焦化石脑油是良好的乙烯裂解原料,延迟焦化工艺特点 渣油加工主要手段之一,技术

2、成熟、对原料适应性强 调节产品的灵活性较高 投资较低,效益较高 柴汽比高 组合工艺,焦化是以贫氢重质残油(如减压渣油、裂化渣油以及沥青等)为原料,在高温(400500)下进行深度热裂化反应。 通过裂解反应,使渣油的一部分转化为气体烃和轻质油品;由于缩合反应,使渣油的另一部分转化为焦炭。 一方面由于原料重,含相当数量的芳烃,另一方面焦化的反应条件更加苛刻,因此缩合反应占很大比重,生成焦炭多。,延迟焦化装置的作用:将重质油馏分经裂解,聚合,生成油气、轻质油,中间馏分油和焦炭。 工作原理:由于重质油在管式炉中加热,采用高的流速(在炉管中注水)及高的热强度(炉出口温度500),使油品在加热炉中短时间内

3、达到焦化反应所需的温度,然后迅速进入焦炭塔,使焦化反应不在加热炉中而延迟到焦炭塔中去进行,因此,称之为延迟焦化。,延迟焦化约生产70%的液体产品,其中: 汽油10%20%; 柴油25%35%; 裂化原料(蜡油)25%35%; 石油气6%8%; 焦炭15%20%。 焦化所得的气体烃和液体油品中含较多的烯烃,安定性较差,故往往作为其他装置的原料或经加氢精制等处理后成为产品。,1.生焦周期?,2.急冷油?,3.循环比?,4.甩油?,生焦周期?,指一台焦炭塔从开始生产到切换处理所用的时间。,急冷油?,用于控制焦炭塔顶油气温度的油品,一般选用焦化轻、重蜡油作为焦炭塔急冷油。焦炭塔注急冷油可防止油气线结焦

4、和焦炭塔泡沫层带入分馏塔。,循环比?,循环比是指循环油质量流量与新鲜原料质量流量之比。,甩油 ?,甩油是指焦炭塔正常预热过程中被冷凝下来的凝缩油,甩油冷却后可直接出装置或进入装置内污油罐,也可以不出装置进分馏塔或原料罐回炼。,第二节 工艺原理,一、焦化反应化学原理 焦化原料油所含烃类的分子很大,并有相当数量的芳烃。 1.裂解反应:在高温(400550)条件下,大分子烃类裂解生成小分子烃类,使渣油转化为气体烃和轻质油品; 1.1烷烃 烷烃在高温下主要发生裂解反应,实质是CC链断裂,裂解产物是小分子的烷烃和烯烃。 生成的小分子烃类还可进一步反应,生成更小的烷烃和烯烃,甚至生成低分子气态烃。 在相同

5、的反应条件下,大分子烷烃比小分子烷烃更易裂解。温度和压力对烷烃的裂解反应有重大影响。温度在500以下、压力很高时,烷烃断链位置一般在碳链中央,这时气体产率低;反之,温度在500以上、压力较低时,断链位置移到碳链一端,此时气体产率增加。 1.2环烷烃 环烷烃热稳定性较高。 2.缩合反应:烃类发生缩合反应,使渣油转化成焦炭。 是指小分子烃类相互作用生成较大分子的化合物,同时还生成其它小分子的化合物。,各种烃类在焦化过程中的反应是不相同的。 烷烃在400600下易裂解为小分子烷烃与烯烃。环烷烃可裂解成烯烃或脱氢转化为芳烃。裂解反应示例如下: 1.断链,2.裂环,3.脱氢,缩合反应示例如下:,芳香烃不

6、易裂解,而易发生缩合反应,成为大分子的多环或稠环烃,并可与烯烃缩合生成石油焦。石油焦的组成和普通焦炭相似,也叫焦炭。,请问烷烃、烯烃、环烷烃裂解难易顺序?,环烷烃烯烃烷烃,二、反应机理 主要化学反应:一种是大分子转化成小分子的吸热反应,称作断裂,另一种是小分子转化成大分子的放热反应,称作缩合,总称为热转化。 在延迟焦化反应过程中,烷烃及环烷烃主要发生裂解或裂解脱氢反应,反应产物多为较小的烷烃和烯烃;芳烃是生焦的基础,原料的化学组成对生焦有很大影响,原料中芳烃及胶质含量越多越易生焦。 焦化过程进行的裂解为吸热反应,缩合为放热反应,总反应表现为吸热反应。 焦化反应过程中,主要是自由基反应机理来解释

7、断裂的化学现象,中间相成焦机理来阐明缩合的化学现象。,1 自由基反应机理 烃类在热反应时,某些易反应分子首先在键能较弱的化学键上断裂成自由基。其中较小的自由基如H、CH3、C2H5等能够在较短的时间内存在,可与别的分子碰撞,又生成新的自由基。较大的自由基较活泼而不稳定,只能瞬时存在,因而很快断裂成烯烃和小的自由基,这样就形成链式反应。故反应最终结果是生成比原料分子小的烯烃与烷烃,包括气体烃。,(1)链的引发 烷烃,烷烃的脱氢、断链都是强吸热反应。 CH键能CC键能,CC键容易均裂; 键中部键能小,容易断链,均裂形成自由基。; 叔碳上氢最易均裂仲碳氢伯碳氢; 碳键断裂由易到难顺序:C叔C叔C叔C

8、仲C仲C伯C伯C伯。,烯烃,与双键相连的CH、CC比在烷烃中相应键能大得多; 与双键形成共轭的键,键能大大减小,位易断裂。,芳烃,C芳H,C芳C比烷烃CH、CC牢固; C芳R:R越大,C芳C更易断裂; 能与芳环形成共轭的键易断裂C芳CC(断裂)。,环烷烃 环己烷CC键能为310kJ/mol,环戊烷CC键能为293kJ/mol,环丁烷与环丙烷(有分子张力)CC键能为201kJ/mol,环己烷与环戊烷CH键能为389kJ/mol。 由此可知,环烷烃主要是CC均裂形成自由基。 双分子形成自由基 2C2H4C2H3C2H5272kJ/mol,(2)链的增长 自由基夺氢:RRHRHR HRHH2R 夺氢

9、难易程度:叔碳氢仲碳氢伯碳氢 自由基分解反应:分为为一个烯烃和小的新自由基 RR烯烃或RH烯烃 断链规则:CH2()CH2()CH3CH2=CH2+CH3 键易断裂,若自由基碳上无氢,位上可以发生脱氢: C(CH3)2-CH2-CH3C(CH3)2-CH=CH2 自由基反应:与烯烃加成 R+CH2=CH-RR-CH2CH-R 自由基异构化反应:CH2-CH2-CH3CH2-CH2-CH3,(3) 链终止 复合反应:H+HH2 H+RRH R+RRR R+RRR 歧化反应:CnH2n+1+CmH2m+1CnH2n+2+CmH2m,2 中间相成焦机理 描述热反应中液相反应物的缩合过程。重质油在热反

10、应中,虽然断裂与缩合反应同时进行,但断裂反应生成的小分子烃很快逸出反应系统,导致链烃逐渐减少,稠环芳烃不断增多,以致重质油形成含有胶质、沥青质等成分的渣油或焦油。随着缩合程度的增加,最终形成焦炭。 缩骤步骤:油分胶质沥青质碳青质油焦质。,随着芳香烃缩骤程度增加,稠环芳烃体系之间的-分子间的作用力使稠环芳烃片状分子相互作用而堆积在一起,体系中出现一个有明显界面、类似液晶的新相。新相具有各向异性的晶体特性与能够流动的流体特性,称为中间相。 由于表面张力的作用,中间相常呈球状的小球体,刚生成时体积仅10-2m,但在高温下能够溶于母液中,在低温下又能够析出。随后,这些小球体逐渐吸收体系中带有稠环芳烃结

11、构的分子,不断长大,最大的直径可达几百m。 各个小球体相遇后,会由于表面张力的作用而发生芳烃层片插入,从而融合并形成由多个小球体组成的复球,经多次融合,复球越来越大,逐渐变成流动的整体中间相,最后再固化成为焦炭。,三、工艺流程 延迟焦化装置的生产工艺分为焦化和除焦两部分,焦化为连续操作,除焦为间隙操作。由于工业装置一般设有两个或四个焦炭塔,所以整个生产过程仍为连续操作。 延迟焦化装置的工艺流程有不同的类型,就生产规模而言,有一炉两塔(焦炭塔)流程、两炉四塔流程等。,340350,500左右,一炉两塔流程,1.原油预热阶段:焦化原料(减压渣油)先进入原料缓冲罐,再用泵送入加热炉对流段升温至340

12、350 左右。 2.经预热后的原油进入分馏塔底,与焦炭塔产出的油气在分馏塔内(塔底温度不超过400)换热。 作用:一方面把原料中的轻质油蒸出来,同时又加热了原料(至390395 左右)。,3.原料油和循环油一起从分馏塔底抽出,用热油泵打进加热炉辐射段,加热到焦化反应所需的温度(500 左右),再通过四通阀由下部进入焦炭塔,进行焦化反应。 为防止油在炉管内反应结焦,需向炉管内注水,以加大管内流速(一般为2m/s以上),缩短油在管内的停留时间,注水量约为原料油的2%左右。 进入焦炭塔的高压渣油,需在塔内停留足够时间,以便进行充分反应。,4.原料在焦炭塔内反应生成焦炭,聚积在焦炭塔内,油气从焦炭塔顶

13、出来进入分馏塔,与原料油换热后,经过分馏得到气体、汽油、柴油和蜡油。塔底循环油和原料一起再进行焦化反应。 焦化生成的焦炭留在焦炭塔内,通过水力除焦从塔内排出。,焦炭塔是两台一组。 每套延迟焦化装置中有的是一组(两台),有的是两组(四台)焦炭塔。 两组塔既可单独操作,又可并联操作,在每组塔中,一台塔在反应生焦时,另一台则处于除焦阶段。即当一台塔内焦炭积聚到一定高度时(一般为塔高的2/3左右高度时)进行切换,切换后通入蒸气除去轻质烃类并注水冷却,然后除焦。 每台塔的切换周期一般为48小时,其中结焦24小时,除焦及其它辅助操作24小时。,延迟焦化装置所产气体、汽油,分别用气体压缩机和泵送入吸收稳定部

14、分进行分离得到干气及液化气,并使汽油的蒸汽压合格;柴油需要加氢精制;蜡油可作为催化裂化原料或燃料油。,延迟焦化装置的主要矛盾在于:使用的原料为重质油,容易结焦,但希望它在焦炭塔中结焦,而不希望它在加热炉、转油线、焦炭塔馏出线和分馏塔底等处结焦。这个矛盾解决了,就可以操作平稳,延长开工周期。 为了解决这个矛盾,在流程设计上就要考虑采取措施。如: 在原料油进加热炉辐射管之前,注入蒸汽或软化水,以加大原料油在炉管中的流速; 在分馏塔底设循环油泵,并在泵入口加过滤器,滤掉焦炭塔油气带来的粉焦。,延迟焦化主要的操作条件?,第三节 主要的操作条件,1、延迟焦化主要的操作条件,一般采用下图所列的范围,其中焦

15、炭塔顶压力、加热炉出口温度和联合循环比为直接影响焦化反应的工艺参数:,1) 反应压力 一般是指焦炭塔顶的操作压力。反应压力对焦化的产品分布有一定的影响。压力高,反应深度增大,气体和焦炭收率增加,液体收率下降,焦炭的挥发分也会有所增加;压力太低,不能克服分馏塔及后路系统的阻力。因此原则上是在克服系统阻力的条件下,尽可能采用低的反应压力,通常为0.150.17Mpa(表)。,2 ) 反应温度 一般指加热炉出口温度。这一温度的变化,直接影响到焦炭塔内的温度和反应深度,从而影响到焦化馏分的分布和质量。温度太低,焦化反应不足,焦炭成熟不够,其挥发分太高,除焦困难。温度太高,焦化反应过深,使焦化汽、柴油馏

16、分继续裂化而降低收率,同时增加气体的收率和焦炭变硬,也会造成除焦困难。另外,温度过高,炉管容易结焦,还会缩短装置的开工周期。因此,加热炉出口温度通常为492505。,3 )循环比 是指焦化分馏塔内一部分比焦化馏出油重的循环油量与原料油量的比值。也有用加热炉进料量与原料量的比值称作联合循环比来表示循环量的大小。循环比或联合循环比对装置的加工量、产量、焦化产品的分布和性质都有较大的影响。一般循环比增加,焦化汽、柴油的收率即随之增加,而焦化馏出油的收率随之减少,焦炭和焦化气收率增加。此外提高循环比,装置的加工能力会下降,因此,采用小循环比操作,减少汽、柴油馏分的收率,提高焦化馏出油的产量,以增加催化裂化或加氢裂化的原料,已成为我国近年来焦化工艺的发展方向。,4 )生焦周期 生焦周期又称生焦时间。即一个焦炭塔从切换生产到切换处理所用的时间。生焦周期的长短,在一定程度上影响焦炭的挥发分。延长生焦时间,实质就是使生焦过程加长,反应进一步深化,焦床处于高温状态时间加长,焦床中未反应的重质油进一步参与反应,所以能降低焦炭挥发分。 生焦周期最大的影响体现

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > PPT模板库 > PPT素材/模板

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号