基因工程6-表达系统和基因工程新技术中国药科大学生物工程所有课件

上传人:我*** 文档编号:145737695 上传时间:2020-09-23 格式:PPT 页数:135 大小:1.03MB
返回 下载 相关 举报
基因工程6-表达系统和基因工程新技术中国药科大学生物工程所有课件_第1页
第1页 / 共135页
基因工程6-表达系统和基因工程新技术中国药科大学生物工程所有课件_第2页
第2页 / 共135页
基因工程6-表达系统和基因工程新技术中国药科大学生物工程所有课件_第3页
第3页 / 共135页
基因工程6-表达系统和基因工程新技术中国药科大学生物工程所有课件_第4页
第4页 / 共135页
基因工程6-表达系统和基因工程新技术中国药科大学生物工程所有课件_第5页
第5页 / 共135页
点击查看更多>>
资源描述

《基因工程6-表达系统和基因工程新技术中国药科大学生物工程所有课件》由会员分享,可在线阅读,更多相关《基因工程6-表达系统和基因工程新技术中国药科大学生物工程所有课件(135页珍藏版)》请在金锄头文库上搜索。

1、基因工程表达系统和蛋白质工程,中国药科大学 生物制药教研室,一、 外源基因在大肠杆菌中的表达,1. 大肠杆菌作为表达外源基因受体菌的特征 a 大肠杆菌表达外源基因的优势 全基因组测序,共有4405个开放型阅读框架 基因克隆表达系统成熟完善 繁殖迅速、培养简单、操作方便、遗传稳定 被美国FDA批准为安全的基因工程受体生物,b大肠杆菌表达外源基因的劣势 缺乏对真核生物蛋白质的复性功能 缺乏对真核生物蛋白质的修饰加工系统 内源性蛋白酶降解空间构象不正确的异源蛋白 细胞周质内含有种类繁多的内毒素,外源基因在大肠杆菌中高效表达的原理 启动子 终止子 核糖体结合位点 密码子 质粒拷贝数,转录,翻译,P t

2、ac = 3 P trp = 11 P lac,启动子,转录调控机理 具有多顺反子结构,基因排列次序为: 启动子(lacP)- 操纵基因(lacO) - 结构基因(lacZ-lacY-lacA) 正调节因子 CAP 负调节因子 lac I,启动子,Lac 表达系统 以大肠杆菌 lac 操纵子调控机理为基础设计、构建的表达系统,lacI Plac lacO lacZ lacY lacA,lacI Plac lacO lacZ lacY lacA,Lac 表达系统 正调节因子 CAP cAMP激活CAP,CAPcAMP复合物与 lac 操纵子上专一位点结合 后,能促进 RNA 聚合酶与 35、10

3、 序列的结合,进而促进 Plac 介导的转录。,基因工程中使用的 lac 启动子均为抗葡萄糖代谢阻遏的突变型,即 Plac UV5,Lac 表达系统 lac UV5 突变体 Plac UV5 突变体能够在没有 CAP 存在的情形下非常有效的起始 转录,受它控制的基因在转录水平上只受 lacI 的调控,因此用它 构建的表达载体在使用时比野生型 Plac 更易操作。,Lac 表达系统 负调节因子 lac I 在无诱导物情形下, lacI 基因产物形成四聚体阻遏蛋白,与启动 子下游的操纵基因紧密结合,阻止转录的起始。,lacI Plac lacO lacZ lacY lacA,lacI Plac l

4、acO lacZ lacY lacA,Tac 表达系统 tac 启动子是由 trp 的 35 序列和 lacUV5 的 10 序列拼接而成的杂 合启动子。 调控模式与 lacUV5 相似,但 mRNA 转录水平更高于 trp 和 lacUV5 启动子(P tac = 3 P trp = 11 P lac),因此在要求有较高基因表达 水平的情况下,选用 tac 启动子比用 lacUV5 启动子更优越。,lac、tac 启动子对宿主菌的要求 在普通大肠杆菌中, LacI 阻遏蛋白仅能满足细胞染色体上 lac 操纵子 转录调控的需要。 当多拷贝的 lacO 随着带有 lacUV5、tac 启动子的表

5、达质粒转化进入 大肠杆菌后,LacI 阻遏蛋白与 lacO 的比例显著下降,无法保证每一 个 lacO 都能获得足够的 LacI 阻遏蛋白参与转录调控。表现为在无诱 导物存在的情形下, lacUV5、tac 启动子有较高的本底转录。,lac、tac 启动子对宿主菌的要求 为了使以 Lac、Tac 表达系统具有严紧调控外源基因转录的能力,一 种能产生过量的 LacI 阻遏蛋白的 lacI 基因的突变体 lacIq 被应用于表 达系统。 大肠杆菌 JM109 等菌株的基因型均为 lacIq ,常被选用为 Lac、Tac 表达系统的宿主菌。 但是这些菌株也只能对低拷贝的表达载体实现严紧调控,在使用高

6、拷 贝复制子构建表达载体时,仍能观察到较高水平的本底转录。 需在表达载体中插入 lacIq 基因以保证有较多的 LacI 阻遏蛋白产生。,lac、tac 表达系统存在的问题 IPTG 用于诱导 lac、tac 启动子的转录,但由于 IPTG 本身具有一定的 毒性。从安全角度,对表达和制备用于医疗目的的重组蛋白并不适合。 一些国家规定在生产人用重组蛋白质的生产工艺中不能使用 IPTG 解决方法 lac 和 tac 启动子的转录受温度严紧调控 乳糖替代 IPTG 诱导 lac 和 tac 启动子的转录,lac、tac 表达系统存在的问题 lac 和 tac 启动子的转录受温度严紧调控 把阻遏蛋白

7、LacI 的温度敏感突变体lacI(ts)、lacIq(ts)插入表达载体或 整合到染色体后,均能使 lac 和 tac 启动子的转录受到温度严紧调控 在较低温度(30)时抑制,在较高温度(42)时开放。 用乳糖替代 IPTG 诱导 lac 和 tac 启动子的转录 乳糖在 b-半乳糖苷酶作用下生成异乳糖,异乳糖具有诱导剂的作用 这一过程涉及乳糖的转运和转化,其效率受到多种因素的影响和制约 因此乳糖诱导的有效剂量大大高于IPTG。 乳糖本身作为一种碳源可以被大肠杆菌代谢利用,较多的乳糖存在也 会导致菌体生理及生长特性变化。乳糖替代 lPTG 作为诱导剂的研究 要与发酵工艺结合起来,才能显示其良

8、好的前景。,转录调控机理 色氨酸启动子 Ptrp 受色氨酸-阻遏蛋白复合物的阻遏,转录呈基底 状态。 在培养系统中去除色氨酸或者加入3-吲哚丙烯酸(IAA), 便可有 效地解除阻遏抑制作用。 在正常的细菌培养体系中,除去色氨酸是困难的,因此基因工程中 往往添加 IAA 诱导 Ptrp 介导的目的基因表达,启动子,Trp 表达系统 以大肠杆菌 trp 操纵子调控机理为基础设计、构建的表达系统,Trp 表达系统,PL 和 PR 表达系统 以 l 噬菌体早期转录启动子 PL 、 PR 为核心构建的表达系统 在野生型 l 噬菌体中, PL 、 PR 启动子转录与否决定了 l 噬菌体进入 裂解循环还是溶

9、源循环。,启动子,PL 和 PR 表达系统 转录调控的机理 由 l 噬菌体 PE 启动子控制的 cI 基因的产物是 PL 、 PR 启动子转录的 阻遏物。cI 基因的产物在大肠杆菌宿主中的浓度取决于一系列宿主与 噬菌体因子之间的错综复杂的平衡关系。由于通过细胞因子来控制cI 基因产物的产生和消失是相当困难的。 因此 PL 、 PR 表达系统都选用温度敏感突变体 cI 857(ts) 的基因产物 来调控 PL 、 PR 启动子的转录。 在较低温度(30)时以活性形式存在 在较高温度(42)时失活脱落,PL 和 PR 表达系统 宿主菌中没有 cI 基因产物,PL、PR 启动子的高强度直接转录,带有

10、PL 或 PR 启动子的表达载体在普通大肠杆菌中相当不稳定。 对宿主菌的要求 用溶源化 l 噬菌体的大肠杆菌作 PL、PR 启动子表达载体的宿主菌 N4830-1,POP2136 等菌株已经溶源化 cI 857(ts) l 噬菌体, 可用作表达外源基因时的宿主菌。 把 cI 857(ts) 基因组装在表达载体上 宿主菌选择范围更大,PL 和 PR 表达系统存在的问题 由于 PL 和 PR 表达系统诱导时不加化学诱导剂,成本又低廉,最初几 个在大肠杆菌中制备的药用重组蛋白质都采用 PL 或 PR 表达系统。 缺陷 在热脉冲诱导过程中,大肠杆菌热休克蛋白的表达也会被激活,其 中一些是蛋白水解酶,有

11、可能降解所表达的重组蛋白。 在大体积发酵培养菌体时,通过热平衡交换方式把培养温度从30 提高到 42 需要较长的时间,这种缓慢的升温方式影响诱导效 果,对重组蛋白表达量有一定的影响。,T7 表达系统 大肠杆菌 T7 噬菌体具有一套专一性非常强的转录体系,利用这一体系中的元件为基础构建的表达系统称为 T7 表达系统。 T7 噬菌体基因 1 编码的 T7 RNA 聚合酶选择性的激活 T7 噬菌体启动子的转录。 T7 RNA 聚合酶活性高,其合成 RNA 的速度比大肠杆菌 RNA 聚合酶快 5倍左右。并可以转录某些不能被大肠杆菌 RNA聚合酶有效转录的序列。 在细胞中存在 T7 RNA聚合酶和 T7

12、噬茵体启动子的情形下,大肠杆菌宿主本身基因的转录竞争不过 T7 噬菌体转录体系,最终受 T7噬菌体启动子控制的基因的转录达到很高的水平。,T7 表达系统 转录调控的机理 T7 噬菌体启动子的转录完全依赖于 T7 RNA 聚合酶,因此 T7 RNA 聚合酶的转录调控模式就决定了表达系统的调控方式。 化学诱导型 温度诱导型 双质粒系统,化学诱导型 噬菌体 DE3 是 l 噬菌体的衍生 株,一段含有 lacI、lacUV5 启 动子和 T7 RNA 聚合酶基因的 DNA 片段被插入其 int 基因中 用噬菌体 DE3 的溶源菌作为表 达载体的宿主菌,调控方式为 化学诱导型,类似于 Lac 表达 系统

13、。,T7 RNA 聚合酶基因,lac 启动子,E.Coli (DE3),IPTG 诱导,温度诱导型 PL 启动子控制 T7 RNA 聚合 酶基因,通过热诱导方式激发 T7 噬菌体启动子的转录。 这种方式可以使本底转录降到 很低的水平,尤其适用于表达 对大肠杆菌宿主有毒性的重组 蛋白质。,T7 RNA 聚合酶基因,PL 启动子,E.Coli (CE6),热诱导,cI857,双质粒系统 一个质粒带有 T7 RNA 聚合酶 基因,另一个质粒带有 T7 启 动子和目的基因 两个质粒的复制子和抗性标记 不能相同 调控方式为控制 T7 RNA 聚合 酶的启动子调控类型,热诱导,T7 表达系统存在的问题 T

14、7 表达系统表达目的基因的水平是目前所有表达系统中最高的,但 也不可避免出现在相对较高的本底转录,如果目的基因产物对大肠杆 菌宿主有毒性,会影响细胞的生长。 解决办法之一 在表达系统中低水平表达 T7 溶菌酶基因。 因为 T7 溶菌酶除了作用于大肠杆菌细胞壁上肽聚糖外,还能与 T7 RNA 聚合酶结合抑制其转录的活性。 目前 T7 溶菌酶基因都通过共转化质拉导入表达系统,它能明显 降低本底转录,但对诱导后目的基因的表达水平无明显影响。,强化转录终止的必要性 外源基因在强启动子的控制下表达,容易发生转录过头现象,即 RNA 聚合酶滑过终止子结构继续转录质粒上邻近的 DNA 序列,形成长短不一的

15、mRNA 混合物过长转录物的产生在很大程度上会影响外源基因的表达,其原因如下: 转录产物越长,RNA聚合酶转录一分子 mRNA 所需的时间就相应增加,外源基 因本身的转录效率下降; 如果外源基因下游紧接有载体上的其它重要基因或 DNA功能区域,如选择性标 记基因和复制子结构等,则 RNA聚合酶在此处的转录可能干扰质粒的复制及其 它生物功能,甚至导致重组质粒的不稳定性; 过长的 mRNA 往往会产生大量无用的蛋白质,增加工程菌无谓的能量消耗; 更为严重的是,过长的转录物往往不能形成理想的二级结构, 从而大大降低外 源基因编码产物的翻译效率,终止子,强终止子的选择与使用 目前外源基因表达质粒中常用的终止子是来自大肠杆菌 rR

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > PPT模板库 > PPT素材/模板

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号